Skip to main content

Geostationary Extended Observations (GeoXO)

NOAA’s Geostationary Extended Observations (GeoXO) satellite system is the ground-breaking mission that will advance Earth observations from geostationary orbit. GeoXO will supply vital information to address major environmental challenges of the future in support of U.S. weather, ocean, and climate operations.

The GeoXO mission will continue and expand observations provided by the GOES-R Series as NOAA's next generation of geostationary satellites. GeoXO will bring new capabilities to address emerging environmental issues and challenges that threaten the security and well-being of every American.

NOAA is working to ensure these critical observations are in place by the early 2030s as the GOES-R Series nears the end of its operational lifetime.

Image of the earth

Advancing NOAA’s Mission

GeoXO will watch over the Western Hemisphere as part of a NOAA observing system that provides world-class environmental information to support both long-term planning and short-term response. This observing system will power increasingly sophisticated models that forecast climate-change-driven weather patterns never seen before. 

With GeoXO, made-to-order data delivery will allow users to customize data access to facilitate more accessible and usable environmental information. Multiple data delivery options will be available, including an internet storefront, mobile device access, and satellite broadcast. Cloud-based product generation will expand data access, increase community involvement, and continuously evolve service.


New and Improved Observations

New technology and scientific advancements will improve observations for weather forecasting and provide new ocean and atmospheric measurements. GeoXO will provide real-time, high-resolution visible and infrared imagery for monitoring Earth’s weather, oceans, and environment. Data from GeoXO will contribute to weather forecast models and drive short-term weather forecasts and severe weather warnings. GeoXO will also provide advanced detection and monitoring of environmental hazards like wildfires, smoke, dust, volcanic ash, drought, and flooding.

Additional observations are recommended to address our changing planet and evolving user needs. NOAA plans to incorporate day/night visible imagery, infrared sounding, atmospheric composition, and ocean color, as well as an improved lightning mapper in the GeoXO system, pending final program approval. These observations will provide vital data to complement those from NOAA’s partners in Europe and Asia, building a critical global observing system.


User Needs Inform GeoXO Capabilities

NOAA, its users, and industry partners conducted a number of capability studies, observation simulation experiments, value assessments, future scenario evaluations, societal and economic benefit evaluations, and user needs workshops, surveys, and interviews to determine which observations are the highest priority for GeoXO to provide.

GeoXO Core Capabilities

Visible/Infrared Imagery
Data continuity; spatial and spectral resolution improvements

Data Collection System Ingest
Service continuity

Data Collection System (DCS), Emergency Managers Weather Information Network (EMWIN), High Rate Information Transmission (HRIT) Data Rebroadcast
Service continuity; potential use of commercial services

GeoXO Recommended Capabilities

Lightning Mapping
Data continuity; spatial resolution improvements

Infrared Sounding
New capability for numerical weather prediction and nowcasting

Day/Night Imagery
New capability for nighttime cloud, fog, and smoke tracking

Ocean Color Imagery
New capability for ocean health and productivity monitoring

Atmospheric Composition Measurement
New capability for detection of air quality threats


Sustaining a Weather-Ready Nation

Visible and Infrared Imagery

Image at NESDIS

High-resolution imagery is the backbone of Earth observations. The GeoXO imager will improve upon the GOES-R Advanced Baseline Imager by providing more detailed observations and more precise tracking of severe weather. GeoXO will also detect wildfires four times smaller, potentially increasing lead time to respond to a blaze before it gets out of control. Additional channels will better detect water vapor in the atmosphere.

Day/Night Visible Imagery

Image at NESDIS

Nighttime visible imagery from geostationary orbit will dramatically improve the ability to detect and track fog at night, characterize the formation of tropical storms, monitor power outages/recovery in real-time, provide a new lights-based search and rescue utility, and introduce the ability to detect and track air quality and visibility hazards such as smoke and dust at night.

Lightning Mapping

Image at NESDIS

Lightning mapping from geostationary orbit improves severe storm analysis, lightning hazard detection, hurricane intensity prediction, wildfire response, and precipitation estimation, and mitigates aviation hazards. A GeoXO lightning mapper will potentially improve resolution over the GOES-R Geostationary Lightning Mapper.

Infrared Sounding

Image at NESDIS

A GeoXO infrared sounder will provide real-time, information about the vertical distribution of atmospheric temperature and water vapor to feed advanced numerical weather prediction models and improve short-term severe weather forecasting.


Supporting Healthy Oceans, Resilient Coasts, and Climate Science

Atmospheric Composition

Image of a thermometer

Atmospheric composition measurements from geostationary orbit will improve air quality monitoring to mitigate health impacts from severe pollution and smoke events.

Ocean Color

Image at NESDIS

A GeoXO ocean color imager will provide observations of ocean biology, chemistry, and ecology to assess ocean productivity, ecosystem change, coast/inland water quality, and hazards like harmful algal blooms.


Recommended GeoXO Constellation

NOAA evaluated a range of space architecture options for delivering the recommended GeoXO observations effectively and efficiently. NOAA is currently planning, pending approval, a three-satellite GeoXO operational constellation. Spacecraft in the current GOES East and GOES West positions will carry an imager, lightning mapper, and ocean color instrument, and a centrally-located spacecraft will carry a sounder and atmospheric composition instrument. A day/night band, or channel, is recommended as part of either the imager or the sounder. This constellation can also accommodate a partner payload on the spacecraft flying in the central location.


Image of Earth with 3 satellites above


GeoXO Timeline

NOAA assessed user needs and studied a variety of potential observational capabilities. These analyses will inform key decisions to be made in 2021. Once the GeoXO requirements are defined, pilot studies will lead to the preliminary design of the spacecraft and instruments. As the program moves into the critical design stage, NOAA will begin preparing data users for new capabilities the GeoXO system will provide. The first GeoXO launch is planned for the early 2030s and will maintain and advance NOAA’s critical geostationary observations through 2055.


Image of the GeoXO timeline

Latest Status:

Aug. 25, 2022: Following a successful System Requirements Review, the defined GeoXO requirements  and preliminary program plan were approved and confirmed to meet the needs of the mission. GeoXO can now proceed toward Department of Commerce Milestone 2, which will formally approve the program and allow GeoXO to move into the implementation phase of the mission. The Milestone 2 Review is scheduled for late 2022.

Nov. 9, 2021NOAA’s GeoXO Program Formally Initiated. The GeoXO Program was formally initiated following a successful Milestone 1 Review. GeoXO will now enter the program definition phase of development, where the team will refine mission requirements, detail acquisition strategies, schedules, cost estimates, resource planning, and risk management, and confirm technology readiness.

July 23, 2021: The GeoXO Program was formally approved to begin the technology and development phase of the mission " Phase A" on July 21, 2021. The joint NOAA/NASA Agency Program Management Council affirmed the program addresses a critical need and that the proposed mission concept is feasible. During Phase A, the GeoXO Program will develop the final mission concept, system-level requirements, necessary system technology developments, and program/project technical management plans.


Collaboration Delivers the Mission

GeoXO is a NOAA program, supported by NASA. NASA will manage the development of the satellites and launch them for NOAA, which will operate them and deliver data to users worldwide.

Industry partners are critical to meeting the mission. NOAA and NASA will work with commercial partners to design and build the GeoXO spacecraft and instruments. Instrument definition and design development studies are underway.

GeoXO procurement notices

Phase A studies

NASA will award several contracts for "Phase A" studies as part of GeoXO instrument formulation activities. These definition-phase study and development contracts will help define each instrument's potential performance, risks, costs, and development schedule.

On March 31, 2021, NASA awarded GeoXO Imager (GXI) Phase A study contracts to L3Harris Technologies, Inc., and Raytheon Company. Each company will conduct a one-year study to develop an infrared and visible imaging instrument concept and mature the necessary technology.

On September 30, 2021, NASA selected Ball Aerospace & Technologies Corporation of Boulder, Colorado, for a GeoXO Sounder (GXS) Phase A Study to conduct a definition-phase study of a geostationary hyperspectral infrared Sounder instrument.

On September 30, 2021, NASA selected L3Harris Technologies Inc. of Fort Wayne, Indiana, for a GeoXO Sounder (GXS) Phase A Study to conduct a definition-phase study of a geostationary hyperspectral infrared Sounder instrument.

On April 20, 2022, NASA selected Northrop Grumman Corporation System Sector of Azusa, California, and Lockheed Martin Corporation of Littleton, Colorado, to conduct GeoXO Lightning Mapper (LMX) Phase A Studies. Each company will conduct a twenty-month definition-phase study of a geostationary lightning mapper instrument.

On May 17, 2022, NASA selected Ball Aerospace & Technologies Corp. of Boulder, Colorado, and Raytheon Intelligence & Space of El Segundo, California, to conduct GeoXO Atmospheric Composition (ACX) instrument Phase A Studies. Each company will conduct a twenty-month definition-phase study of a geostationary atmospheric composition instrument.

On May 26, 2022, NASA selected Ball Aerospace & Technologies Corp. of Boulder, Colorado, and Raytheon Intelligence & Space of El Segundo, California, to conduct GeoXO Ocean Color (OCX) instrument Phase A Studies. Each company will conduct a twenty-month definition-phase study of a geostationary ocean color instrument.

On July 26, 2022, NASA awarded GeoXO Spacecraft Phase A Study contracts to Lockheed Martin Space of Littleton, Colorado, and Maxar Space LLC of Palo Alto, California. Each company will conduct a ten-month definition-phase study of a geostationary GeoXO spacecraft.

Download the PDF version of the GeoXO fact sheet.


This information is subject to change as the GeoXO program develops.