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Outline

e Background
* A framework for assessing Smallsat sounding instrument performance

* Integrated calibration/validation system using operational systems as
backbone for smallsat

* Example using the TEMPEST-D data as proxy

* Study of onboard processing for hyperspectral sounders to reduce
downlink data volume



Background: Impact of Major Observing Syste m
on Reducing 24-h Forecast Errors

* Legacy Microwave, infrared Total FSOI impact
sounders, and GNSS-RO are on
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* Forecast Sensitivity Observation
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vary from study to study
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Evolution of Microwave and Infrared Sounders

- Past, present, and future instruments
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Smallsat Background

* Proliferation of small satellite missions in recent years for weather
applications, from Radio Occultation, Microwave, to Infrared.

* Smallsat constellations have distinct advantages: agile, cheaper, faster,
smaller, compared to legacy systems which takes decades to develop.

* However, smallsats also have disadvantages for operational weather forecast,
including short lifespan, lack of consistency, stability, calibration/validation,
and data quality assurance.

* Two major areas of study in transitioning smallsat from research to
operations to assess its full utility for NOAA’s Satellite Observing System
Architecture (NSOSA):

» Data quality assurance through calibration/validation
* Develop a framework for integrated calibration and validation of multi-sensor

* Accommodate diverse sensor types with large data volume, and address challenge in cross-
calibration of SmallSat sensors for applications in data assimilation for weather forecasting.

* Direct radiance assimilation into NWP (such as GFS)



Smallsat Studies at NOAA/STAR

s*Developed a framework of Integrated Calibration/Validation System
(ICVS) for Smallsat MW, RO, and IR sensors

*Implemented well-established satellite instrument
Calibration/Validation techniques for SmallSat
e Radiometric bias evaluation
* Geolocation accuracy evaluation
* Spectral calibration

s Evaluated available SmallSat data using the system developed for
demonstration



Methodology and Data

Using current operational systems as backbone to evaluate smallsat data
» Microwave — ATMS/AMSU
» Infrared — CrlIS/IASI
» Radio Occultation — COSMIC2/Metop/KOMPSAT5

Methodology
v’ Global comparisons of observations
v’ Simultaneous Nadir Overpass (SNO) methodology
v Comparison between observation and model calculations (O-B)
v Model calculation with radio occultation profile as input

Datasets used in the study
e TEMPEST-D SmallSat MW data
* COSMIC2 data
* Proxy data for infrared/microwave sounders



~ Smallsat Roadmap to Operational Use in NWP

Operational use

* Data acquisition
Early assessments

* Data quality assessment
Vendor suitability for NWP (radiometric * Data quality assurance

bias, noise, geolocation accuracy,
spectral calibration, latency etc.

* Data management

* Smallsat development,

launch, early orbit checkout * Data assimilation experiments &
 Data acquisition transition to operations
* Impact studies

* Impact scores

* Experimentation

Research > Operations



Example 1: TEMPEST-D MW Sensor
Performance and Data Quality Assessment

Hurricane Dorian observed by 5 channels of TEMPEST-D
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Overall TEMPEST-D is very successful
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* Daily and long term monitoring of the
TEMPEST-D SmallSat made available
online, including parameters such as:

» Spacecraft position/attitude, instrument health, daily
channel imagery, geolocation matching, and sensor
radiometric performance

* Provided timely feedback to the TEMPEST-
D science team on instrument
performance and data quality evaluation
for five processing releases

* Using the SmallSat ICVS framework and tools, feedback
provided within 24-48 hours through reanalysis of 6-10
months of historical TEMPEST-D datasets.

* Supported CRTM coefficient development
to enable TEMPEST-D calculations

* Essential step for data assimilation, product retrievals, and
forward calculations.
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Monitoring TEMPEST-D Attitude Data Quality Improvements with

Processing Software Update
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Assessing the Geolocation Accuracy

Improved Geolocation Accuracy

TEMPEST-D V1.3 vs. MetOp-A at SNO
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Radiometric Bias Evaluation of TEMPEST-D with four Legacy
Sensors (SNO method)

* Four reference sensors:
* NPP/ATMS, NOAA-20/ATMS, MetOp-A/MHS, MetOp-B/MHS
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Example of SNO between TEMPEST-D and ATMS
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* SNO criteria:
¢ Time and Distance Difference: 10 minutes and 20 km
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* BT homogeneity: standard deviation < 1 k

* Viewing angle: nadir
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Uncertainties of BT biases for 87 GHz channel are largely reduced in V2.0
Confirmed radiometric consistency of TEMPEST-D V2.0 87 and 164 GHz channel data




Ongoing Radiometric Bias Evaluation of
TEMPEST-D with O-B (Model) Method

TEMPEST-D CHO2 (178 GHz)

* Trending of radiometric
biases of 5 channels of
TEMPEST-D MW sensor
with O-B (Model) is ongoing
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Example 3: Double Difference Analysis using CRTM

O-B (Model) Radiometric Bias Analysis Inter-instrument (IR/MW vs. RO)
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Using NPP/NOAA-20 IR/MW sensors as proxy for SmallSat

sensors * Using NPP/NOAA-20 IR/MW as proxy SmallSat to monitor

Monitor O-B bias with CRTM-modeled BT profile from inter-instrument bias with CRTM-modeled BT profile from
ECWMEF reanalysis data the RO data
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> ICVS Framework for SmallSats MW, RO,
and IR Sensors

* AnICVS framework has been developed to enable rapid ingestion, calibration and validation of

the data from different sources
Microwave (MW), Infrared (IR) and Radio Occultation (RO) sensors on SmallSats. All measure atmospheric profiles

and related parameters which are potentially useful for weather forecasting
* Webpage “Integrated Cal/Val for Microwave/Infrared/Radio Occultation Small Satellite Sensors”
is available at https://ncc.nesdis.noaa.gov/SmallSatellite/index.php.
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Observation-based Inter-Sensor Calibration

RO Data Inter-Comparison ‘ SNO-based Inter-IR Sensor Cal/Val

Small Satellite Sensors Integrated Calibration/Validation System for Small Satellite Sensors

SNO-based Inter-MW Sensor Cal/Val
SmallSAT Orbit and SmallSAT SmallSAT RO Profile Bending Angle Bias szISAlT OrI?it and SmallSAT IR
Geolocation MW RSR Geolocation Temperature eolocation RSR
SNO- Spectral Introduction

based Bias Bias from
Bias Convolution Framework of Smallsat
Integrated CallVal System

Small/Legacy SAT Orbit Small/Legacy SAT
and Geolocation Hyperspectral IR

SNO- Spectral Il Profile Bias
i i Collocation
based Bias Bias from HUmIdIty/Pressure
Profile Bias

Bias CRTM
Small/Legacy RO
Small/Legacy Satellites
MW RSR

SNR Comparison

Small/Legacy SAT
Orbit and Geolocation

Background/Model-based Cross- Sensor Calibration
Reanalysis/Model vs. MW/IR Temperature Bias (0-B) Temperature Bias for RO RO vs. MW/IR Temperature Bias T o focls
« Simultaneous Nadir Overpass
(SNO) Predictions
MW/IR SmallSAT SmallSAT Sensor SmallSAT Obs. « Radiative Transfer Model
calculations

MW/IR BT

Geolocation Parameters
ECMWF/GFS '
Temp. Collocation
Profiles
Small/Legacy | | Simulated
RO Profiles BT

SmallSAT Obs. SmallSAT RO
Temp. Profiles

MW/IR SmallSAT SmallSAT Sensor
Geolocation Parameters MW/IR BT

Collocation
Simulated Small/Legacy SAT

EC::\;\;’:Q?FS @ 1 BT RO Temp. Profiles
SmallSat ICVS webpage

SmallSat MW/IR/RO Sensor Cal/Val system
A framework for Smallsat Cal/val has been developed N
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Advantages/Disadvantages of Utilizing More On-Board Processing

Advantages:

Data volume reduction. Option to mitigate downlink bandwidth limitations, if
compression is not sufficient.

Disadvantages:

Inability to Reprocess/Recalibrate spectra:

* |ASI-style processing scheme generates calibrated spectra on-board and
downlinks the spectra only.

* |If data is lost in the on-board processing, it is impossible to fully retrieve the
data.

Reduced Hardware Robustness:
* On-board processing requires a large amount of memory that are vulnerable
to high energy particles, e.g., Single Event Upset near SAA region.

17
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On-Board vs. Ground Processing

More On-Board Processing

More Ground Processing

Instrument

IASI/IASI-NG

CrIS/MTG-IRS

On-Board Processing Inclusive

Pre-Processing,

Spike Detection,
Non-Linearity Correction,
ZPD Determination
FFT,

Partial Radiometric Calibration,
Spectral Band Merging

Pre-Processing,
Filter & Decimation,
Bit Trimming,
Packet Encoding

Downlinked LO/L1a Data

Partially Calibrated Spectra

Decimated/Compressed Interferogram

Data Volume Reduction

v’ (x30)

v’ (x13.5)

Correction of Erroneous Calibration

v (More recovery capabilities)

Life-Cycle Reprocessing

v’ (Re-analysis, Climate Applications)

Simplicity of On-Board Electronics

v (More reliable system)

Hardware Robustness

v (More reliable/resilient system; side
switch)
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Trending of the CrIS and IASI Radiometric Comparison over a LWIR Spectral
Region: 672-682cm™

S-NPP CrIS BT, LWIR 672-682 cm™’
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Summary

A new era is here for Smallsat observations in MW, IR, and RO with great potential for
operational weather forecast

Smallsat has unique advantages, but also has limitations

Operational backbone systems can be used to evaluate the Smallsat data, to ensure
their quality for operational use

An integrated calibration/validation system has been prototyped to demonstrate the
quality assurance for Smallsat to ensure the success of the program

Onboard processing for IR sounder data volume reduction has pros and cons, depending
on specific design and requirements. The end results are comparable for most
applications.
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