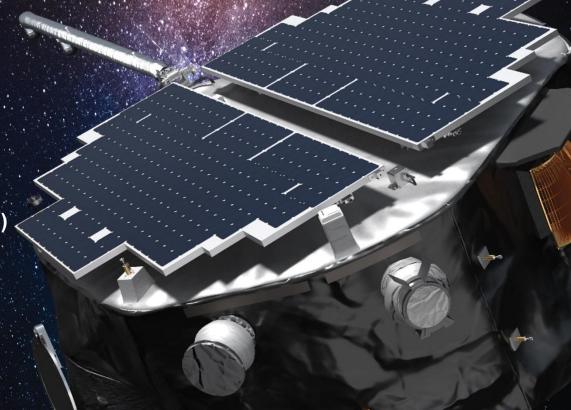


IMAP Active Link for Real-Time (I-ALiRT) Overview

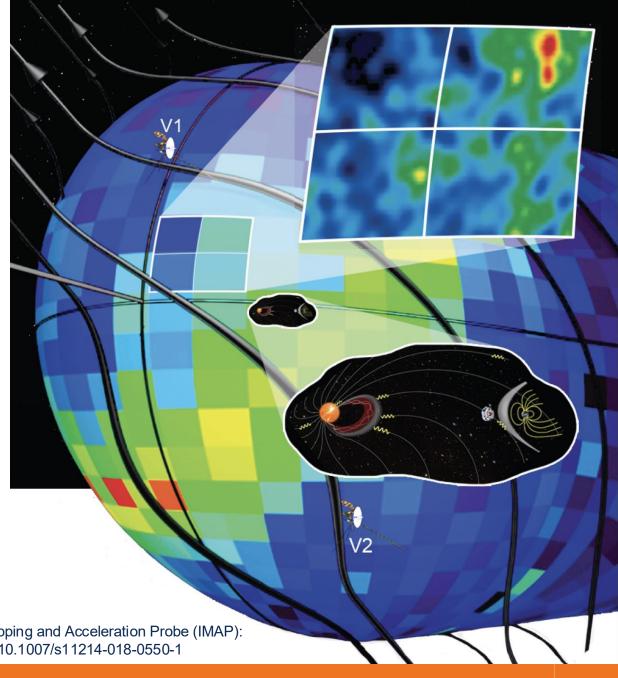

Christina Lee – UC Berkeley, Space Sciences Laboratory (UCB SSL)

I-ALiRT Lead

clee@ssl.berkeley.edu

Eric Christian – NASA Goddard Space Flight Center (NASA GSFC)

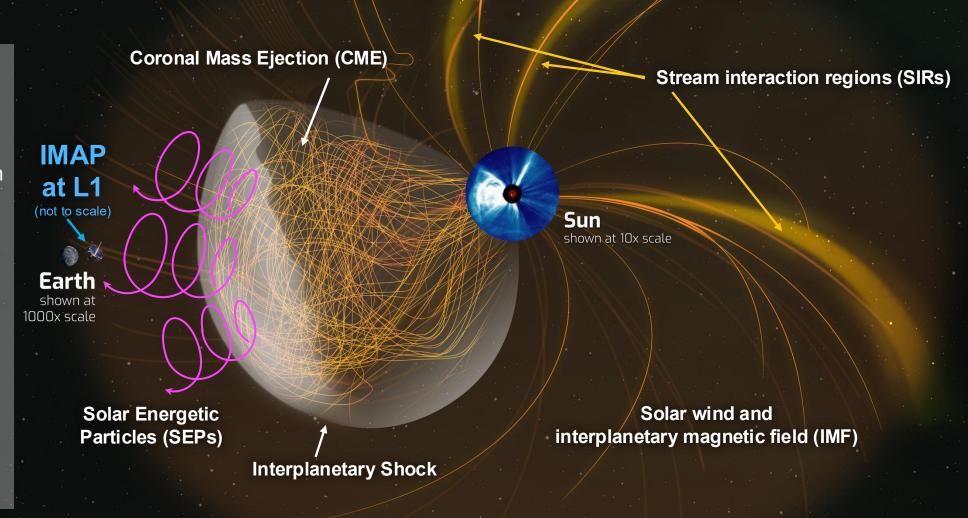
I-ALiRT Deputy Lead



IMAP mission in a nutshell

- IMAP launches is expected to launch NET Sept 23 2025, on a two-stage Falcon-9 rocket from Kennedy Space Center and reaches its final orbit at L1 using onboard propulsion.
- □ 10 instruments working together to:
 - understand the **acceleration** of particles expelled from the Sun to high energies
 - I-ALiRT architecture: IMAP provides near realtime observations of solar wind, energetic particles and magnetic fields at L1, measurements necessary for space weather applications.
 - map the interaction of these high energy particles with the local interstellar medium by remotely sensing the boundary of our solar system (~ 100 AU).
 - provide precise measurements of the interstellar neutral flow and composition, interstellar dust composition, and complementary ionization rates/radiation pressure

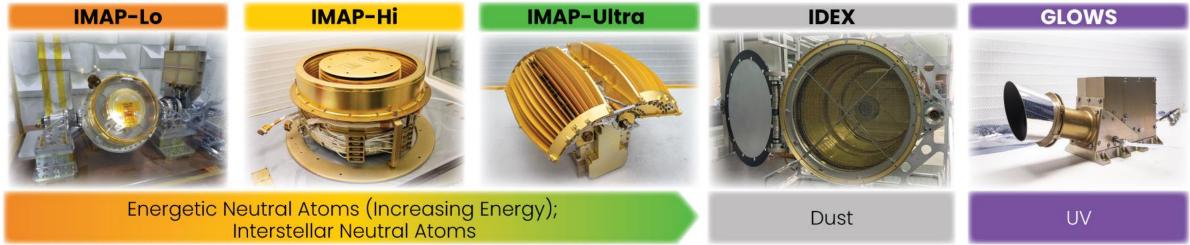
IMAP paper


McComas, D.J., Christian, E.R., Schwadron, N.A. *et al.* Interstellar Mapping and Acceleration Probe (IMAP): A New NASA Mission. *Space Sci Rev* **214**, 116 (2018). https://doi.org/10.1007/s11214-018-0550-1

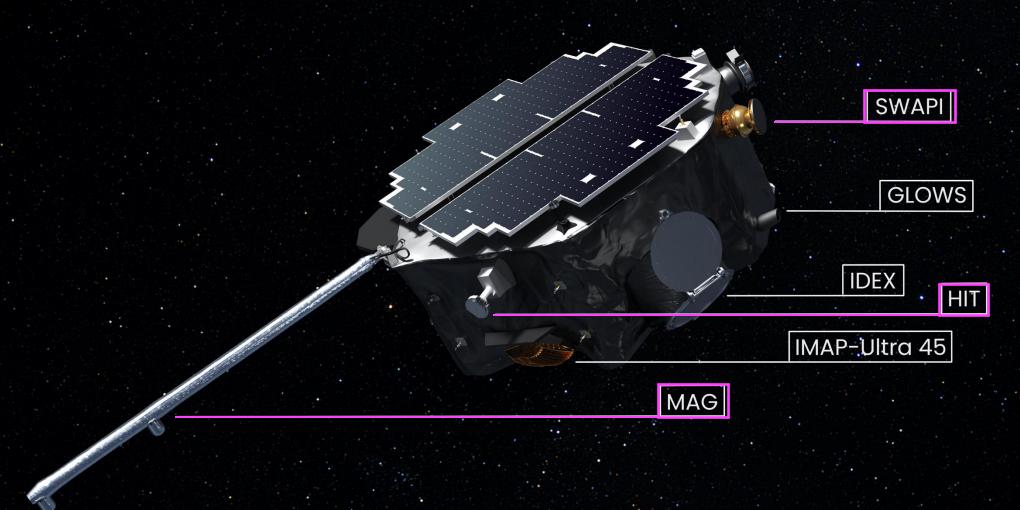
IMAP will continuously broadcast the I-ALiRT space weather data to ground stations around the world

I-ALiRT can:

- Support the safety of satellites and astronauts, in the event of CMEs and SEPs from solar eruptive activity
- Provide up to ~ 45 min warning of the solar wind that cause hazardous space weather effects in the geospace environment (e.g., geomagnetically induced currents, communications and navigation disruptions, thermospheric drag)



INSTRUMENT SUITE



IMAP

IMAP

Near real-time space weather data products from I-ALiRT

Continuation of ACE Data with Significantly Higher Cadences

IMAP Source	I-ALiRT Data Product	Description	Units	I-ALiRT Cadence	ACE RTSW Cadence	
SWAPI (§2.1)	pseudo-speed (up) pseudo-density (np)	Coincidence counts of 0.4 to 10 keV/q solar wind H ⁺ protons grouped as	km/s #/cm ³			
	pseudo-density (T _p) pseudo-temperature (T _p)	a single 12-second coarse sweep (across 62 energy steps of the ESA energy range)	K	12 sec	64 sec	
CoDICE-Hi (§2.2.2)	Suprathermal proton flux	0.05 to 5 MeV H ⁺ proton (differential intensities; 15 energy ranges)	#/(cm ² -sr- s-MeV)	1 min	5 min	
HIT (§2.3)	SEP proton count rates	2 to 15 MeV protons (2 energy ranges, each for sunward and antisunward look directions)	#/s	1 min	5 min	
MAG (§2.4)	B vectors $\label{eq:Azimuthal} \mbox{Azimuthal and elevation} \\ \mbox{angles of B } (\phi_B, \theta_B)$	GSE, GSM, and RTN coordinates. Magnetic field measurements at dynamic range of ± 512 nT and resolution ≥ 16 pT	nT	4 sec	60 sec	

New Space Weather Data Products

IMAP Source	I-ALiRT Data Product	Description	Units	I-ALiRT Cadence
CoDICE-Lo (§2.2.1)	Solar wind charge state ratios and elemental abundances	C ⁶⁺ /C ⁵⁺ , O ⁷⁺ /O ⁶⁺ , Fe ^(low) /Fe ^(high) , C/O, Mg/O, Fe/O determined from pseudo-number densities of solar wind species	unitless	4 min
HIT (§2.3)	SEP electron count rates	0.5 to 1 MeV electrons (2 energy ranges, each for sunward and antisunward look directions)	#/s	1 min
SWE (§2.5)	Identification of counterstreaming (bidirectional) electron flow	A single number indicating whether electrons are flowing in one direction along the magnetic field or both directions (parallel and antiparallel) to the magnetic field	0 = unidirectional 1 = bidirectional	1 min
	Solar wind electron count rates	Normalized counts of 100 eV to 1 keV suprathermal electrons summed over 7 CEMs and all spin angles, at each energy channel (8 total).	Normalized #/s	

I-ALIRT plots, data access, ground station information will be accessible through the **IMAP SDC** website https://imapmission.com/

Data

Space Weather

Publications

Software

Documentation ☑

Team

TEAM LOGIN

Space Weather Observations

I-ALIRT Data Products (Team)

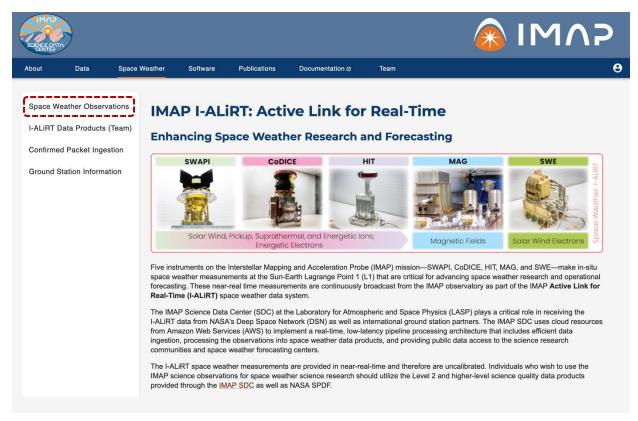
Confirmed Packet Ingestion

Ground Station Information

I-ALIRT navigation links

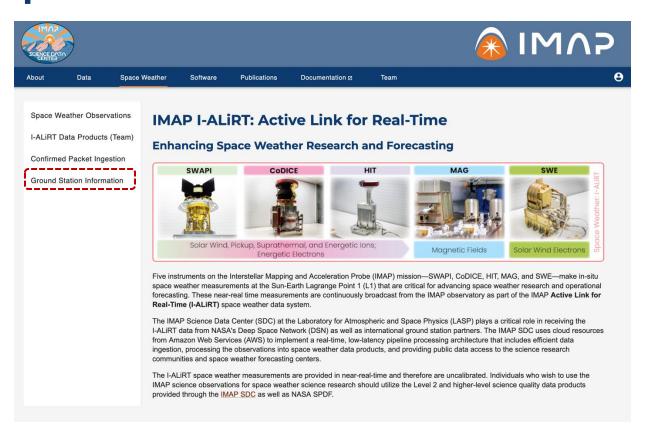
Access to I-ALiRT subpages IMAP I-ALIRT: Active Link for Real-Time

Enhancing Space Weather Research and Forecasting


Five instruments on the Interstellar Mapping and Acceleration Probe (IMAP) mission—SWAPI, CoDICE, HIT, MAG, and SWE—make in-situ space weather measurements at the Sun-Earth Lagrange Point 1 (L1) that are critical for advancing space weather research and operational forecasting. These near-real time measurements are continuously broadcast from the IMAP observatory as part of the IMAP Active Link for Real-Time (I-ALiRT) space weather data system.

The IMAP Science Data Center (SDC) at the Laboratory for Atmospheric and Space Physics (LASP) plays a critical role in receiving the I-ALIRT data from NASA's Deep Space Network (DSN) as well as international ground station partners. The IMAP SDC uses cloud resources from Amazon Web Services (AWS) to implement a real-time, low-latency pipeline processing architecture that includes efficient data ingestion, processing the observations into space weather data products, and providing public data access to the science research communities and space weather forecasting centers.

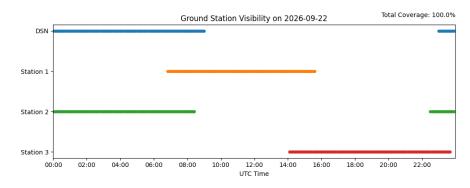
The I-ALiRT space weather measurements are provided in near-real-time and therefore are uncalibrated. Individuals who wish to use the IMAP science observations for space weather science research should utilize the Level 2 and higher-level science quality data products provided through the IMAP SDC as well as NASA SPDF.


Access to quick look plots and data files (*.json, *.cdf) will be available starting on Feb 1, 2026

I-ALiRT Overview

Information about the I-ALiRT ground station network will be updated as NASA HQ continues to establish additional antenna partners

NASA has established agreements with:


Ground Station Site Location	Institution/Agency	Coordinates (latitude, longitude)
Kiel, Germany	Christian-Albrechts- University of Kiel (CAU)	54.26°N, 10.18°W
Jeju, South Korea	Korea AeroSpace Administration (KASA)	33.25°N, 126.17°E

 Coordination and support from NOAA to utilize a few of their ground stations for I-ALiRT

 Example I-ALiRT ground station coverage plot showing 24-h coverage from DSN and NASA partner ground stations

I-ALiRT Architecture

CoDICE

- Hi: Suprathermal lons at 1 min Cadence
- Lo: SW Charge State Ratios at 4 min Cadence

SWAPI

• Thermal Plasma at 12 sec Cadence

HIT

• Protons & Electrons at 1 min Cadence

SWE

• Low Energy Electrons at 15 sec Cadence

MAG

• Magnetic Field at 4 sec Cadence

Hi: 272 bit I-ALiRT Packet @ 1 Hz

Lo: 192 bit I-ALiRT Packet @ 1 Hz

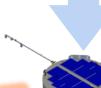
256 bit I-ALiRT Packet @ 1 Hz

528 bit I-ALiRT Packet @ 1 Hz

384 bit I-ALIRT Packet @ 1 Hz
192 bit I-ALIRT Packet @ 1 Hz

Flight Software

- Strips headers off of incoming packets
- Integrates I-ALiRT packets into a single packet
- Estimates spin information from ACS applications
- · Defines instrument status from heartbeat measured by autonomy
- · Incorporates autonomy thruster flag and rule firings
- Frames packet for downlink


ACS Data ACS

• Measure Attitude

Autonomy Data

Autonomy

- Measure Inst. Heartbeat, 1Hz
- Thruster Flags
- Rule Firings

If Observatory is placed in safe mode, instruments are turned off and I-ALiRT packets are replaced with safe mode packets

Normal Contact Downlink 375-500 kbps

I-ALIRT Packets

DSN

I-ALIRT Packets along with Recorded Data Real-time Housekeeping **IMAP MOC**

I-ALiRT Packets

Heath & Status Message or

Safe Mode Packets

I-ALiRT Packets or Safe Mode Packets @ 2083 bps downlink

IMAP SOC

I-ALiRT Packets or

Safe Mode Packets

(Each has a unique APID)

Participating
I-ALiRT Ground Station

Post Processed Space
Weather Data

Space Weather Community

From Lee et al. (submitted to SSRv. 2025)

IMAP SOC post-processes space weather data within 5 minutes of receipt of data

Summary of the I-ALiRT space weather data latencies

I-ALiRT data flow process	Latency Requirements (seconds)
Generating data packet of the full cadence of measurements from CoDICE, SWAPI, HIT, MAG and SWE	240
Spacecraft FSW and RF processing of the I-ALiRT data frame	50
Ground station receiving I-ALiRT data frame that contains the full data cadence of previous measurements	300
Transferring of I-ALiRT data frame by the ground station to the SOC (or if during DSN contacts, to the SOC via the MOC)	10 (not a requirement)
Processing of the full measurement cadence to when the data products are available to the public	300

'Worst case' scenario: If all of the listed processes need to utilize their maximum latencies to fulfill the tasks, the latest data that are made publicly available would be no more than 900 seconds (15 minutes) old

I-ALiRT details can be found in the manuscript to be published in Space Science Reviews

Current status: addressing reviewers' comments

- Space Weather Science to Enhance Forecasting with the NASA IMAP Active Link
- 2 for Real-Time (I-ALiRT) System
- 4 Christina O. Lee¹, Eric R. Christian², Laura Sandoval³, Alastair Crabtree⁴, Mihir I. Desai⁵,
- 5 Matina Gkioulidou⁶, Bernd Heber⁷, Timothy Horbury⁴, Lynn Kistler⁸, Jenny Knuth³,
- 6 Bishwas L. Shrestha⁹, Kristopher Larsen³, Stefano Livi⁵, Greg M. Lucas³, Daniel E.
- 7 Matlin⁶, Tori Marbois³, David J. McComas⁹, John G. Mitchell², Joey Mukherjee⁵, Arik
- Posner¹⁰, Jamie S. Rankin⁹, Chelle Reno⁹, Nathan A. Schwadron⁸, Ruth M. Skoug¹¹,
- 9 Evan J. Smith⁶, Michael J. Starkey⁵, Drew L. Turner⁶, Bradley D. Williams¹⁰, Eric J.
- 10 Zirnstein⁹

3

Teamwork makes the dream work! IMAP pulls together an international team of 25 institutions

