

NATIONAL WEATHER SERVICE

## Rapid Refresh Forecast System (RRFS) Data Assimilation System

#### **Presenter: Shun Liu<sup>1</sup>**

Xiaoyan Zhang<sup>3</sup>, Ming Hu<sup>2</sup>, Ting lei<sup>3</sup>, Donald Lippi<sup>3</sup>, Samuel Degelia<sup>3</sup>, Hui Liu<sup>3</sup>, Masanori Oigawa<sup>5</sup>, David Dowell<sup>2</sup>, Chunhua Zhou<sup>2</sup>, Ruifang Li<sup>2</sup>, Haidao Lin<sup>2</sup>, Curtis Alexander<sup>2</sup>, Terra Ladwig<sup>2</sup>, Stephen Weygandt<sup>2</sup>, Matthew Pyle<sup>1</sup>, Jacob Carley<sup>1</sup>, Daniel Holdaway<sup>1</sup> and Daryl Kleist<sup>1</sup> <sup>1</sup>NCEP/EMC, <sup>2</sup>GSL, <sup>3</sup>Lynker, <sup>4</sup>SAIC, <sup>5</sup>JMA/UCAR

NOAA'S SATELLITE APPLICATIONS SYMPOSIUM SERIES: Severe Weather and Hurricane Applications, July 16, 2025



## OUTLINE

- Rapid Refresh Forecast System (RRFS) overview
- RRFS Data Assimilation System (RDAS)
- RDAS cycling strategy
- Observations used in RDAS
- Satellite data assimilation in RRFS
- Overview of RDAS (MPAS+JEDI) for RRFSv2



## Rapid Refresh Forecast System (RRFS) A UFS Application

- FV3 dynamical core Limited Area Model
- Hourly updated
- 3 km grid spacing over North America
- 65 vertical layers
- Hybrid 3DEnVar assimilation (30 members)
- Includes Smoke & Dust
- Deterministic forecasts to at least 18h every hour
- Det & Ens forecasts to 60h every 6 hours
  - 12 total RRFS members
    - 6 on-time + 6 t-6h (plus 2 HRRR TL members for CONUS/AK)
    - Membership count drops at longer leads





## **RRFS Physics and Vertical Resolution**

| Physics                          | SCHEME                                                              | REFERENCE                                                                     |  |  |
|----------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
| PBL/Turbulence                   | MYNN-EDMF                                                           | Olson et al. (2019)                                                           |  |  |
| Surface Layer                    | MYNN                                                                | Olson et al. (2021)                                                           |  |  |
| Microphysics                     | Thompson-Eidhammer                                                  | Thompson and Eidhammer (2014)                                                 |  |  |
| Climatological<br>Aerosols       | Thompson-Eidhammer                                                  | Thompson and Eidhammer (2014)                                                 |  |  |
| Smoke and Dust                   | RAVE fire data, FENGSA scheme for dust                              | Ahmadov et al., Freitas et al., 2010                                          |  |  |
| Shallow<br>Convection            | MYNN-EDMF                                                           | Olson et al. (2019)<br>Angevine et al. (2020)                                 |  |  |
| Deep Convection                  | Grell-Freitas                                                       | Grell and Freitas (2014)                                                      |  |  |
| Gravity Wave<br>Physics          | Small Scale and Turbulent<br>Orographic Gravity-Wave<br>& Form Drag | It Beljaars et al. (2004)<br>e Tsiringakis et al. (2017)<br>Toy et al. (2021) |  |  |
| Land Model                       | RUC LSM                                                             | Smirnova et al. (1997, 2000, 2016)                                            |  |  |
| Large Lakes                      | FVCOM                                                               | Fujisaki-Manome<br>et al. (2020)                                              |  |  |
| Small Lakes                      | CLM Lake                                                            | Subin et al. (2012), Mallard et al. (2015),<br>Benjamin et al. (2022)         |  |  |
| Long and Short<br>Wave Radiation | RRTMG                                                               | lacono et al. (2008), Mlawer (1997)                                           |  |  |

| Parameter        | RRFS | HRRRv4 | NAMv4 |
|------------------|------|--------|-------|
| Number of levels | 65   | 50     | 60    |
| Lowest level (m) | 8    | 8      | 20    |
| Top (hPa)        | 2    | 20     | 2     |





Department of Commerce // National Oceanic and Atmospheric Administration // 4

# **RRFS Data Assimilation System (RDAS)**

| Deterministic<br>DA Spin-up Cycle | <ul> <li>03z-08z and 15z-20z</li> <li>Cold start at 03z and 15z and hybrid EnVar with 80 GDAS ensemble members</li> <li>hourly cycled 04z-08z and 16-20z with Hybrid EnVar with 30 regional ensemble member</li> </ul> |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Deterministic<br>DA Product cycle | <ul> <li>Hybrid EnVar with 30 regional ensemble members</li> <li>hourly cycled from 00z to 23z</li> </ul>                                                                                                              |  |  |
| Ensemble DA<br>EnKF cycle         | <ul> <li>EnKF</li> <li>hourly cycled from 00z to 23z</li> </ul>                                                                                                                                                        |  |  |



# **RDAS cycling strategy**





# **Observations used in RDAS**

| Obs Platform                                       | Variables                                       |  |  |
|----------------------------------------------------|-------------------------------------------------|--|--|
| METAR, <mark>Mesonet</mark> ,<br>Buoy, C-Man, Ship | T, moisture, W, ps, ceiling,<br>vis             |  |  |
| Rawinsonde                                         | T, moisture, W                                  |  |  |
| NEXRAD Radar                                       | dBZ, rw, VAD W, REF                             |  |  |
| Lightning                                          | Flash Extent Density                            |  |  |
| Aircraft                                           | T, moisture, W                                  |  |  |
| GOES-16/18/19                                      | ABI, AMVs, cloud top pres. &<br>T               |  |  |
| Polar Orbiters                                     | Radiances (AMSUA, MHS, ATMS, CRIS, IASI, SSMIS) |  |  |





Department of Commerce // National Oceanic and Atmospheric Administration // 7

7

# **RRFS observations: CONUS vs NA**



#### wind observations



#### Department of Commerce // National Oceanic and Atmospheric Administration // 8

## **Satellite Data in RRFS**

- Satellite radiances assimilation
  - especially valuable for limited-area convective model over data-sparse areas like oceans, mountains, and rural regions
  - High-frequency hourly DA cycles in RRFS benefit from the near-continuous coverage geostationary satellite radiances, enhances the system's responsiveness to rapidly evolving mesoscale weather systems
  - Properly assimilate cloud-sensitive radiance channels improves: Vertical humidity profiles, Cloud water and ice fields, Cloud-top properties
  - Convective-scale models rely on accurate representation of small-scale atmospheric features. Improved radiance assimilation leads to better:
    - Timing and location of convective storms
    - Quantitative Precipitation Forecasts (QPF)
    - Prediction of severe weather (e.g., thunderstorms, flash floods)
- AMV wind assimilation
- Regional Hourly Advanced Baseline Imager (ABI) and Visible Infrared Imaging Suite (VIIRS) emissions, RAVE RAVE for smoke and dust initialization



## Status of Satellite Radiance DA in RRFS V1

- Assimilates a similar set of polar-orbiting satellites as GDAS, but under clear-sky conditions only
- The same quality control (QC) and bias correction (BC) methods as GDAS
- BC coefficients and error variances are updated hourly
- Uses radiance channels below the 2 mb model top
- Implements a finer thinning mesh of 60 km
- Supports high spatial (3-km) and high temporal (hourly) data assimilation

| AMSU-A<br>METOP-B<br>METOP-C<br>NOAA-15<br>NOAA-18 | Channels 8-13<br>Channels 1-10, 15<br>Channels 1-5, 7-10, 15<br>Channels 1-4, 6-7, 10, 15 | ATMS<br>NOAA-20 Cha<br>NOAA-21 Chann<br>NOAA-NPP Chann | nnels 1-11, 16-22<br>els 1-11, 16-22<br>els 1-11,16-22 |
|----------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| NOAA-19                                            | Channels 1-6, 9-10, 15                                                                    | CRIS                                                   |                                                        |
|                                                    |                                                                                           | NOAA-20 CrIS                                           | 98 Channels                                            |
| MHS                                                |                                                                                           | NOAA-21 CrIS                                           | 98 Channels                                            |
| METOP-B                                            | Channels 1-5                                                                              | NOAA-NPP CrIS                                          | 98 Channels                                            |
| METOP-C                                            | Channels 1-5                                                                              |                                                        |                                                        |
| NOAA-18                                            | Channel 1-5                                                                               | IASI                                                   |                                                        |
| NOAA-19                                            | Channels 1-2, 4-5                                                                         | IASI METOP-B                                           | 141 Channels                                           |
|                                                    |                                                                                           | IASI METOP-C                                           | 141 Channels                                           |
| ABI                                                |                                                                                           |                                                        |                                                        |
| GOES-18                                            | Channels 8-10 (CSR)                                                                       | SSMIS                                                  |                                                        |
| GOES-19<br>GOES-16                                 | Channels 8-10 (CSR) (in plan)<br>Channels 8-10 (CSR)                                      | F17 Channel 5-                                         | 7                                                      |

\* All satellite radiance data are assimilated under cleary-sky condition in RRFSV1

\* Shaded color indicated satellites that have been discontinued



### Impact Study for Satellite Radiance DA in RRFS V1.0



- Satellite radiance data has more positive impacts on moisture forecast than temperature and wind compared with only assimilating conventional data
- ABI data has the most important positive impact for middle level moisture forecast



# Smoke and Dust initialization with RAVE data



Source : https://rapidrefresh.noaa.gov/RRFS-SD/

Source : https://www.ospo.noaa.gov/products/land/rave/

Department of Commerce // National Oceanic and Atmospheric Administration // 12

Provided by Dr. Partha Bhattacharjee



#### HWT Spring Forecasting Experiment 2025 5-week evaluation RRFS vs. Operational CAMs (20250428 - 20250529)



HWT wrap-up discussion



Department of Commerce // National Oceanic and Atmospheric Administration // 14

# **RDAS for RRFSv2**

• Regional convection-allowing ensemble forecast system built upon MPAS (Model for Prediction Across Scales) and JEDI

- Jointly developed by EMC, GSL, UFS community, NCAR, JCSDA, NSSL, ...
- All key components are based on the community systems
- Workflow evolves to meet operation requirements

#### • Challenges of MPAS-JEDI:

- $\,\circ\,$  UFO validation and development.
- Background error covariance for MPAS-JEDI
- $\,\circ\,$  DA algorithm validation.
- $\circ\,$  Computational performance
  - MPAS vs FV3
  - JEDI vs GSI

#### All regional DA features from RRFS version 1 will be ported or further developed to RRFS version 2



## Radiance DA in RRFSV2 (MPAS+JEDI)

| Instrument | Platform(s)        | BUFR2IODA<br>Conversion | YAML<br>Config   | Obs Available in<br>IODA | Assimilation<br>Tested | Status/Notes                   |
|------------|--------------------|-------------------------|------------------|--------------------------|------------------------|--------------------------------|
| AMSU-A     | MetOp_b/c          | Completed               | <b>V</b> Drafted | Ves                      | V Partial              | YAMLs not yet finalized        |
| ATMS       | NPP,<br>NOAA-20/21 | Completed               | 🔽 Final          | Ves Yes                  | Completed              | Working as expected            |
| CrIS       | NPP,<br>NOAA-20/21 | Completed               | V Partial        | Ves Yes                  | V Partial              | YAML and obs not yet finalized |
| ABI        | GOES-16/18         | Completed               | 🔽 Final          | Ves Yes                  | Completed              | Working as expected            |
| MHS        | MetOp_b/c          | Pending                 | No               | No                       | No                     | Planned after AMSU-A           |
| IASI       | MetOp_b/c          | Pending                 | No               | No                       | No                     | Planned after CrIS             |

Legend:





## **GOES-16 ABI Channel 8 HofX Comparison: JEDI vs. GSI**

QC filter comparison between JEDI and GSI over CONUS



#### **RRFSV2** baseline 1 Retro Experiment

#### ABI OMB: 4-Day Time Series & Histograms (With vs. Without BC)



Bias correction reduces mean OMB across Channels || Standard deviation of OMB is generally smaller with BC

Time series show more stable and centered OMB after correction || **Histograms** reveal tighter and more symmetric OMB distribution with BC Department of Commerce // National Oceanic and Atmospheric Administration // 18

## **Summary and Conclusion**

- RDAS for RRFSv1
  - RDAS developed for RRFSv1 with the advanced DA techniques
    - RRFSv1 will be implemented in the early of 2026
  - Satellite observations and products play important role in improving RRFS forecast skill over NA domain with high rapid updated cycling strategy
- RDAS for RRFSv2
  - Worked on transitioning DA functions in RRFSv1 to RRFSv2
  - Extend clear-sky ABI radiance assimilation to all-sky conditions in RRFSv2
  - Expand ATMS and AMSU-A cloudy radiance assimilation to include precipitation-affected scenes



# Thank you!

