

GXS Data Distribution

Monica Coakley¹, Owen McElhinney¹,

Nicolaie Todirita², and Steve Bidwell³

May 22, 2024

¹MIT Lincoln Laboratory, ²NOAA, ³NASA,

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the Department of Commerce under Air Force Contract No. FA8702-15-D-0001 or FA8702-25-D-B002. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Department of Commerce.

© 2025 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

GSX Level 1b Data Usage

2

- Weather Forecasting
 - Provides detailed information about atmospheric conditions, including temperature and moisture, which are
 essential for improving the accuracy of weather forecasts
 - Is a critical input for real time atmospheric profiles and winds, as well as for data assimilation for short-term, and longer-term numerical weather prediction models for NWS forecasts
 - Provides essential, and critical data to plan for, and prepare for extreme weather events like hurricanes, thunderstorms, and severe precipitation, allowing for improved disaster preparedness, resource allocation, and life savings.
- Industry
 - Sounder data is used in aviation, agriculture, and other industries that rely on accurate weather forecasts

GXS Level 1b Data Flow

• GXS rapid observations and data flow will permit timely data ingest as well as rapid winds updates for forecasts and warnings

- GXS Radiance data (Level 1b) will be made available to the NESDIS Common Cloud Facility (NCCF)
- GXS Level 1b is large and may overburden some user systems
 - NOAA/EMC Numerical Weather Prediction will ingest full L1b data
- All others Level 1b users will access compressed Level 1b data from NCCF

GXS Data Distribution and Compression

- Multiple compression methods were studied for efficiency
 - Principle Components (PCs) meets the need
 - EUMETSAT and ESA plan MTG-IRS* L1b data distribution via PCs (hybrid methodology)
- Principle Components reduce data volume
 - Number of PCs must be large enough to reduce radiance reconstruction factor

Component 3

Component 4

Component 6

Hybrid Compression Methodology

- Combination of global PCs (fixed, based on large set of spectra) and local PCs (regional, time/scene-dependent) are planned in the hybrid method
 - Global PCs address typical spectra
 - Local PCs ensure coverage for non-standard spectra
 - Combination of PCs coefficients and mean spectra affords reconstruction of Level 1b Radiances
- PCs will be available from NCCF
 - Compression error depend on number of components
 - Noise of true minus reconstructed spectra shown
 - 36 components reduces error to less than NEdN
 - Additional components reduces error further
 - Two arrays envisioned for distribution
 - Global PC weights per pixel; local PC weights and spectra

Delivery Architecture for Products and User Facing Comm Services

- GeoXO L0 and L1b products delivered to NESDIS's Office of Common Services (OCS's) Common Cloud Framework
- NCCF will make data available to users
 - Internet (satellite or terrestrial) primary path
 - Cellular networks alternate path
 - Commercial satellite broadcast (alternate) under Office of Satellite and Product Operations (OSPO) via commercial services
 - High Rate Data (potential for PCs) at ~ 50 Mbps
 - Medium /Low Rate Service at ~ 1 Mbps (including higher level products, warnings, and Data Collection Service data)
 - Users will weigh on options near 50 Mbps (e.g. GXI at no finer than 1 km resolution, skinny LMX, and GXS PCs)

GEONETCast Example of Commercial Rebroadcast

- Market Research Activities: Example GNC-A Proxy
 Current Coverage Area
 - Example of level of service in C-Band for given price point
 - Next slide shows needed dish size
 - GOES-R L2+ CMI products, RGBs, JPSS products, etc.
- Needed dish size shown and varies with location

https://www.geonetcastamericas.noaa.gov/architecture-and-coverage.html

- GeoXO LO and L1b products will be delivered to NESDIS's Office of Common Services (OCS's) Common Cloud Framework
- NCCF will make data available to users
- GXS Level 1b Radiance data will be compressed via Principle Components, using a hybrid of global and local PCs
 - Similar to methodology planned for use with MTG-IRS data
- MTG-IRS data will allow verification of hybrid methodology, with its launched planned for this summer

GeoXO High Rate Service

GOES-R

GOES Rebroadcast (GRB)

- Processed Level 1b data that is uplinked
- Distributed L-Band Hemispherical Broadcast
 - Dual Circular Polarization, 31 Mbps (all)
- L1b Imagery (ABI), Lightning (GLM), Space
 Weather/Solar Instrument Data

GeoXO

GeoXO High Rate Service

- Reduced / compressed processed Level 1b data
- Primary Distribution: NCCF
- Data Passed to Commercial Provider, Uplinked to Commercial Communications Satellite
 - Broadcast TBD Band, ~50 Mbps (subset)
- Comparable Architectures: EUMETCast, GEONETCast-Americas (GNC-A)

Typical GRB Receiving Antennas

C-Band GNC-A (El Salvador)

Auxiliary GOES-R User Facing Comm Services

GRB	HRIT	EMWIN	DCS
Processed GOES-R data: ABI L1b, GLM, and SpWx	Processed images with reduced cadence (some w/ reduced resolution)	Processed weather alerts and warnings (NWS text messages)	GOES-R collects messages from ~40,000 platforms (aggregated data stream)
Distribution to NWS Centers and other users	Distribution to widespread users	Distribution to emergency managers	Included in HRIT/EMWIN downlink for distribution
Minimum Latency Highest Availability	Modest Latency High Availability	Modest Latency High Availability	Modest latency High Availability
Data Rate: 31 Mbps	Data Rate: 348 kbps	Data Rate: 32 kbps	Data Rate: 20 kbps

GRB Receiver System

HRIT/EMWIN Receiver System

HRIT/EMWIN Receiver System

DCS Sensor on Buoy