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1 INTRODUCTION 
In May 2022, the National Oceanic and Atmospheric Administration (NOAA) National 
Environmental Satellite, Data, and Information Service (NESDIS) Joint Ventures released a broad 
agency announcement (BAA) expressing interest in exploring digital twin technologies. The goal 
of the BAA is for NESDIS to enhance their ability to process, monitor, quality control, consolidate, 
fuse, and assimilate environmental observations while streamlining satellite data ground 
processing and dissemination to users and applications. This Earth Observations Digital Twin (EO-
DT) could serve as the next-generation ground enterprise system in NESDIS operations which will 
interface with the Earth system approach modeling effort NOAA is undertaking. The EO-DT must 
also have an agile, scalable framework to integrate with the rapidly expanding amount of data 
NOAA must handle from both ground and space-based observations along with model output. In 
addition, the digital twin will rely on responsible artificial intelligence (AI) and machine learning 
(ML) tools to process data efficiently and will be designed to serve as an entry point for a wide 
range of NESDIS operational environmental data users and applications. 
To explore digital twin technologies for this EO-DT use case, Lockheed Martin (LM) and NVIDIA 
partnered on a 2-year program to build an AI-Driven Earth and Space Observing Digital Twin 
prototype which ingests, analyzes, and visualizes geophysical data coming from five Earth system 
domains (atmosphere, ocean, cryosphere, land and hydrology, and space weather). The LM-
NVIDIA EO-DT prototype demonstration and study goals included: 

1. Provide NOAA with a functioning, scalable prototype that may serve as the foundation of 
next-generation ground enterprise system. 

2. Determine cost estimates for maintaining a digital twin and scaling it to store large 
amounts of data. 

3. Provide recommendations for standardization and interoperability with other digital twins. 
4. Study how a digital twin can benefit NOAA as a research and development (R&D) 

product and an operational product. 
 

In this report, we detail our study of building a functional digital twin prototype and our 
recommendations to NOAA based on our results. The technological assets we will deliver are 
outlined in Table A-1 in the Appendix. 
1.1 DIGITAL TWINS AND HOW THEY CAN BENEFIT NOAA 
Digital twin technology allows users to replicate, analyze, and simulate current, future, and past 
conditions. The National Academy of Science defines a digital twin as a set of virtual information 
constructs that mimic the structure, context, and behavior of a natural, engineered, or social system 
(or system of systems). It dynamically updates with data from its physical twin, has a predictive 
capability, and informs decisions that realize value (Figure 1-2, National Academies, 2024). 
Similarly, the National Aeronautics and Space Administration’s (NASA) Advanced Information 
Systems Technology (AIST) team defines an Earth System Digital Twin (ESDT) as an interactive 
and integrated multidomain, multiscale, digital replica of the state and temporal evolution of Earth 
systems (Figure 1-1, Le Moigne & Smith, 2022). It dynamically integrates relevant Earth system 
models and simulations, other relevant models (e.g., related to the world's infrastructure), 
continuous and timely (including near real-time and direct readout) observations (e.g., space, air, 
ground, over/underwater, ‘Internet of Things,’ socioeconomic), long-time records, analytics, and 
AI tools. (Le Moigne & Smith, 2022) 



NOAA EO-DT  November 2024  

2 

 
Figure 1-1 NASA AIST Definition of a Digital Twin. 

Graphic sourced from AIST ESDT Workshop Report. 

 
Figure 1-2 National Academies Definitions of a Digital Twin. Graphic sourced from 

Foundational Research Gaps and Future Directions for Digital Twins. 
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In our prototype, we strove to create a digital twin that supported NOAA NESDIS’ mission from 
this BAA by exploring digital twin technologies. The EO-DT system NOAA NESDIS seeks is an 
integrated Earth system replica which monitors Earth’s environment with multiscale, multivariable 
features that integrates a large set of observing systems and environment analyses systems (Le 
Moigne & Smith., 2022, Figure 1-3). It dynamically incorporates Earth system data and 
observations (primarily satellite and ground-based data) and relies on trustworthy and responsible 
AI tools, including ML and computer vision. Future EO-DT components include an Earth system 
model for prediction based on input of the monitoring EO-DT and an assessment component to 
cover ‘what if’ scenarios (Le Moigne & Smith., 2022, Figure 1-3). This prototype would benefit 
NOAA NESDIS by improving the ability to process, monitor, quality control, consolidate, fuse, 
and assimilate environmental observations. It would also streamline the processing and 
dissemination of satellite data to users and applications. 

 
Figure 1-3 NOAA’s Vision for EO-DT.  

Graphic sourced from AIST ESDT Workshop Report. 
1.2 DIGITAL TWIN OVERVIEW 
The AI-Based EO-DT prototype that LM and NVIDIA built for NOAA NESDIS integrates mature 
software to ingest, process, and display geophysical and space weather data in an immersive digital 
environment. The agile, scalable EO-DT framework processed observations from secure ingest 
through product generation and data fusion to product distribution to end users. We composed our 
architecture with three functional components: backend data processing, real-time collaborative 
file sharing, and customizable scientific visualization (Figure 1-4). OpenRosetta3D™ (OR3D) 
formats, stores, and applies pre-existing AI/ML fusion and anomaly detection algorithms to data. 
NVIDIA’s Omniverse connects multiple applications to a collaborative real-time environment. 
Agatha visualizes data from multiple sensors within an interactive 3D Earth and space platform. 
We designed our flexible architecture to incorporate data from additional and future sensors and 
enable interoperability with other initiatives through standard interfaces. Our prototype also allows 
users to view fused geophysical data by geographical area, temporal coverage, and vertical level, 
providing the foundation for the next-generation enterprise ground system. 
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Figure 1-4 Component Breakdown of LM-NVIDIA’s AI-Based EO-DT Architecture. 

1.2.1 OpenRosetta3D: AI-Enabled Data Processing and Orchestration Engine 
OR3D is a backend Technology Readiness Level 9 architecture that supports disparate data 
processing and fusion. OR3D is cloud deployable and leverages common Amazon Web Services 
(AWS) features and services to orchestrate geospatial workflows for structured and unstructured 
data. Within our EO-DT architecture, OR3D’s primary responsibilities are: 

• Workflow orchestration and production management for large-scale data analytics. 
• Processing using AWS. 
• Formatting of geophysical data. 

 

OR3D develops a customized workflow for each geophysical layer to implement the unique 
processing required for optimal visualization. Basic processing includes some combination of 
format interpretation, decoding of data streams, filtering, tiling geographic reprojection, and 
metadata mapping. Advanced processing includes developing, adapting, and implementing AI/ML 
algorithms to fuse data and detect anomalies for each geophysical variable. 
1.2.2 Omniverse Nucleus: Digital Twin Distributed Collaboration Platform 
NVIDIA Omniverse is a platform for developing digital twins in a distributed, collaborative 
environment. Developed to satisfy the collaboration needs of global, multidisciplinary 
organizations, Omniverse provides components to build and execute digital twins while satisfying 
the need for real-time interactivity and scalability. Omniverse has gained traction as the digital 
twin platform of choice across a broad range of domains, including media and entertainment, 
architecture and engineering, manufacturing, smart cities, robotics, autonomous vehicles, and 
multiple scientific use cases. For our EO-DT use case, the Omniverse Nucleus service subscribes 
to data layer updates made from OR3D and acts as a data server that can broadcast updates to a 
single instance of Agatha, multiple instances of Agatha, or to another application that has a 
connecter to the Omniverse Nucleus service. 
1.2.3 Agatha: 4D Interactive User Visualization Platform 
Agatha is an LM-developed composable data pipeline and visualization platform. It enables users 
to configure and control how that data is displayed on an interactive 4D canvas (including space 
and time). For geospatial data and our EO-DT use case, Agatha allows users to overlay multiple 
datasets directly onto the Earth or in orbit around the Earth. For each geophysical variable, we 
built custom visualization tools for an intuitive user interface and experience. 
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2 DIGITAL TWIN DATA 
To prove out our prototype, we integrated a broad range of environmental variables. We selected 
datasets that allowed the use of a variety of geospatial and AI/ML tools to support specific NOAA 
operational use cases. Table 2-1 and Table 2-2 describe the geophysical parameters and data 
sources (NOAA satellites, instruments, ground-based measurements, and models) for each of the 
Earth system components we ingested for our demonstration along with details on spatial and 
temporal resolution and coverage. 
For the atmospheric component, we processed 3D temperature and moisture profiles from 
Integrated Global Radiosonde Archive (IGRA) ground-based radiosonde point measurements. We 
used the AI/ML algorithm multi-instrument inversion and data assimilation preprocessing system-
AI (MIIDAPS-AI) to derive temperature and moisture profiles from advanced technology 
microwave sounder (ATMS) satellite observations and Global Forecast System (GFS) model 
output (Section 3.1.4.2). For the ocean, we processed sea surface temperature (SST) using 
Advanced Clear-Sky Processor for Ocean global SST from the Joint Polar Satellite System (JPSS) 
Visible Infrared Imaging Radiometer Suite (VIIRS) and Geostationary Operational Environmental 
Satellites (GOES) Advanced Baseline Imager (ABI) along with model output from GFS. SST 
directly interacts with sea ice concentration (SIC) which we processed using derived products from 
Advanced Microwave Scanning Radiometer (AMSR-2) and a blended high-resolution 
VIIRS/AMSR-2 product, in addition to model output from GFS. For land, we demonstrated a fused 
fire product from GOES ABI Fire/Hot Spot Characterization and VIIRS Active Fires M- and Iband 
measurements. In addition, we used the Faraday cup and magnetometer on the Deep Space Climate 
Observatory (DSCOVR) to visualize the magnetic shear across the 3D magnetopause surface, 
using solar wind bulk plasma and the solar wind magnetic field. 

Table 2-1 EO-DT Input Variables and Sensors. 
Earth System 
Component Variable  Data Sources  

Atmosphere  Temperature and 
Moisture Profiles  

IGRA data, ATMS (JPSS), and GFS  

Ocean SST  ABI (GOES), VIIRS (JPSS), and GFS  
Cryosphere  SIC  AMSR-2/VIIRS (JPSS) and GFS  
Land and Hydrology  Fire Product  ABI (GOES), VIIRS (JPSS)  
Space Weather  Solar Wind Bulk Plasma 

and Magnetic Field  
Faraday cup and magnetometer 
(DSCOVR)  

 

Table 2-2 EO-DT Input Data Spatial and Temporal Resolution and Coverage. 

Geophysical Variable Sensor 
Spatial 

Resolution 
Spatial 

Coverage 
Temporal 
Resolution 

SST  ABI  2 km  Full disk  1 hour  
SST  VIIRS  375m  Global  10 mins  
SST  GFS  13 km  Global  1 hour  

Temperature and moisture  ATMS  16 km  Global  1 hour  
Temperature and moisture  GFS  13 km  Global  1 hour  
Temperature and moisture  IGRA  N/A  Global  6 hour  

SIC  AMSR2  10km  Both poles  1 day  
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Geophysical Variable Sensor 
Spatial 

Resolution 
Spatial 

Coverage 
Temporal 
Resolution 

SIC  Blended 
VIIRS/AMSR2  

1 km  Both poles 1 day  

SIC  GFS  13 km  Both poles  1 hour  
Fire product  ABI  2 km  Full disk  1–10 mins  
Fire product  VIIRS  375m  Global  10 mins  

Solar wind magnetic shear Faraday cup and 
magnetometer  

N/A  N/A  4–6 minutes  

 

2.1 EO-DT DATA INPUT SERVICE 
For each sensor, we pull 2 weeks of historical data at various times using our static data input 
service. Any missing data or shortened timelines are outlined in Appendix Section 1 Table A-2. 
Table 2-3 outlines data for the EO-DT that is pulled from various sources and stored in an AWS 
S3 bucket for later processing. Our data input service sources data directly from various NOAA 
S3 buckets or through HTTP requests that locate and download data from a variety of NOAA or 
NASA websites. Once the data is saved off, it is organized into directories by sensor, date, and 
time to prepare it for ingestion into our backend applications. Upon completion, the number of 
saved files per sensor is compared against the expected number of files to highlight if any are 
missing (e.g., for 1 hour of SST, we expect 2 GFS, 2 GOES, and 6 VIIRS). 
Data can also be pulled on a real-time basis using the data input service in ‘live’ mode. For this 
prototype, the live input service focused on pulling down SST data only. When running in live 
mode, the service periodically checks for SST data within the previous hour to be uploaded to its 
respective NOAA storage location and downloads them to our S3 bucket. Once all 10 SST files (6 
VIIRS, 2 GOES, 2 GFS) have been downloaded, a configuration file is generated which kicks off 
lambda events and all other downstream processing (detailed in Section 3.1.2). 

Table 2-3 EO-DT Data Sources for each Geophysical Variable Sensor. 
Geophysical Variable  Sensor  Data Source URL  

SST  ABI  NOAA GOES Open Data Registry  
SST  VIIRS  NOAA CoastWatch NPP VIIRS L3U Sea 

Surface Temperature Data  
SST  GFS  NOAA GFS Open Data Registry  

Temperature and moisture  ATMS  NOAA JPSS Open Data Registry  
Temperature and moisture  GFS  NOAA GFS Open Data Registry  

SIC  AMSR2  STAR NESDIS AMSR2 Daily Sea Ice 
Concentration  

SIC  Blended 
VIIRS/AMSR2  

NOAA PolarWatch Blended Daily Sea Ice 
Concentration  

SIC  GFS  NOAA GFS Open Data Registry  
Fire product  ABI  NOAA GFS Open Data Registry  
Fire product  VIIRS  NASA VIIRS Fire Data Product  

Solar wind magnetic shear  Faraday cup and 
magnetometer  

NOAA DSCOVR Space Weather Data 
Portal  
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3 DIGITAL TWIN FRAMEWORK 
For our prototype, we used the foundation of OR3D to build a custom processing engine (hereafter 
referred to as the NOAA processing engine). After data was organized into our S3 bucket through 
our data input service, it was ingested into the NOAA processing engine and converted into a 
common spatiotemporal grid and required data processing and fusion algorithms were applied. 
Data was then aggregated and tiled into the Uber H3 hierarchy and formatted as a series of 
OpenUSD layers for interactive visualization and analysis. The following sections provide more 
detail on each of the processing steps. 
3.1 NOAA PROCESSING ENGINE DATA PROCESSING PIPELINES 
We built two different methods of processing data to encompass our study goal of operational and 
R&D use cases for NOAA. These include: 

• The static processing method, which consists of downloading the necessary data to a local 
EC2 server or Linux machine and running the NOAA processing engine docker container 
with the proper command line arguments (input folder for the downloaded data, output 
folder, etc.) (Figure 3-1) (Recommendation 1.1). 

• The live processing method, which uses data upload events to invoke automatic processing 
of the data that was uploaded (Figure 3-2) (Recommendation 1.2). 

 

 
Figure 3-1 Diagram Showing the Static Data Pipeline. The data input service collects data, 
processes it through the NOAA processing engine, and writes it locally or to Omniverse Nucleus. 
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We recommend using the static processing method for quick prototyping and R&D use cases and 
using the live processing method for processing data operationally using verified and highly tested 
pipelines (Recommendation 1.2). 
3.1.1 Static Data Processing Pipeline 
For quick prototyping and R&D use cases, we recommend our static data processing pipeline 
which allows the user to control what data is processed. This can be performed for analysis of a 
large historical dataset or for a single file. The static data pipeline provides the flexibility to process 
data coming from a local user directory or an AWS S3 bucket rather than being streamed in near 
real-time for operational purposes using the data input service (Figure 3-1) (Recommendation 1.2). 
Using the NOAA processing engine, a user can set up command line arguments including the path 
to the data to be processed, the output folder, and some optional flags depending on the data type 
being processed. The static data pipeline also allows for easier integration of containerized 
algorithms for testing (Section 3.1.3). A full example of the static data pipeline and a list of all 
command line options and their usages are documents in Appendix Section 5.1 and 5.2. 
3.1.2 Live Data Processing Pipeline 
To study how our digital twin prototype would be used operationally, we built a live data 
processing pipeline as part of our NOAA processing engine (Figure 3-2). First, a user interacts 
with a configuration file which is input into our data input service that determines what data a user 
wants processed and defines NOAA processing engine parameters like the resolution, tiling 
system, etc. In this implementation, data streams in from our data input service as if it was coming 
in on a near real-time basis from a sensor. For the current implementation of the live data 
processing pipeline, we focused on one example of processing hourly timesteps of SST data. Each 
timestep consists of six VIIRS, two GOES (East and West), and two GFS files; one for the previous 
and one for the current timestep. 
When a file is uploaded from our data input service into an S3 bucket, our AWS Lambda function 
(detailed in Appendix Section 6), which is an event driven python script, determines if the file is a 
data file or a configuration file. If a data file is uploaded, its path is collected and stored in a 
DynamoDB database which acts as a temporary storage location while other files are collected 
The configuration file should only be uploaded when a full timestep of data is collected and signals 
that processing of the data should begin. Our data input service automatically generates and 
uploads the configuration file once all files from 1 hour of data have been uploaded. 
Once the configuration file is uploaded, the AWS Lambda then acquires all the file paths stored in 
the DynamoDB, parses the configuration file for user-defined options, and creates a script that will 
be passed to an AWS EC2 server for it to perform. This script consists of downloading all the files 
locally to the EC2 server, pulling the most updated version of the NOAA processing engine 
container, and setting up the command line arguments with the options specified in the 
configuration file. After this is setup, the container runs on the EC2 which processes the data that 
was downloaded and outputs tiled USD files (Sections 3.3–3.6) to the Omniverse server (Sections 
3.7–3.8). The EC2s are created and destroyed on demand to save on processing costs. 
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Figure 3-2 Diagram Showing the Live Data Pipeline.  

The data input service collects data, processes it through the NOAA  
processing engine using multiple AWS EC2s, and writes it locally or to Omniverse Nucleus. 

3.1.3 NOAA Processing Engine Algorithm Applications 
Depending on the use case, algorithms can be applied within or outside of the NOAA processing 
engine. If NOAA-provided data processing algorithms are provided as individual containers in the 
case of MIIDAPS-AI (Section 3.1.4.2) for non-operational use, we recommend those 
containers are run as a preprocessing step outside of the NOAA processing engine 
(Recommendation 1.2). Inputs are ingested from an S3 bucket or local directory which already 
includes the necessary files from pulling from the data input service (Section 2.1). Once processed, 
outputs from the algorithm container are then ingested from an AWS S3 bucket or the local 
filesystem on which the NOAA processing engine is run (Figure 3-3). If containerized 
algorithms are desired for operational use, we recommend they can be added directly into 
the NOAA processing engine pipeline (Recommendation 1.2). As an example of a potential 
operational process that needs to be completed on a near real-time basis, we built our data fusion 



NOAA EO-DT  November 2024  

10 

and anomaly detection algorithms directly into the NOAA processing engine that are run as part 
of a mode passed into the application. 

 
Figure 3-3 Diagram Showing the Containerized Algorithm Pipeline. 

The data input service collects data, processes it through an algorithm prior to being  
passed to the NOAA processing engine, and writes it locally or to Omniverse Nucleus. 

3.1.4 NOAA Processing Engine: Data Processing, Data Fusion, and Anomaly Detection 
Once the data is ingested, regardless of the pipeline used, the data is preprocessed into a common 
spatiotemporal grid. Our processing linearly interpolates all 2D data products to a global 10 km 
Earth centered Earth fixed (ECEF) common grid, although this spatial resolution is configurable. 
Different data sources are also fused together at this resolution defined by the BAA as an ideal 
global resolution. In addition, our pipeline detects both sensor and physical anomalies in each 
Earth system domain dataset. Our system mainly uses quality flags provided in metadata to filter 
out sensor anomalies (e.g., non-clear-sky anomalies). To ensure the EO-DT prototype included 
technical design considerations required by a complete implementation, the NOAA processing 
engine pipeline records data source attributes and observational and analytical metadata in the final 
OpenUSD output. The metadata is used to optimize visualizations in our user interface and can be 
inspected or queried quantitatively by the user. The metadata recording mechanism permits future 
incorporation and linkage to more extensive scientific metadata and associated schemas, in-depth 
data provenance, and knowledge graph resource description framework (RDF) entities, 
relationships, and triplestores. 
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3.1.4.1 Sea Surface Temperature 
To study how to best represent SST in our EO-DT prototype, we use global observations from 
geostationary and polar orbiting satellite and models including GOES East, GOES West, VIIRS, 
and GFS (Figure 3-4). To fuse this data, we integrated a data fusion algorithm directly into the 
NOAA processing engine which linearly interpolates data from each of the data sources into a 
single new fused layer (Figure 3-5). The fusion algorithm does not track which individual sensors 
are integrated into the fusion layer, rather it is defined by a list of files that is processed by the back 
end. To further demonstrate data fusion, we created a metric in the SST output metadata which 
provides a count of the number of sensors that see an observation of SST in the pixel (Figure 3-5). 
This gives users a confidence interval based on how many sensors verified the same measurement. 
The standard deviation of the fused measurement is also provided to give additional confidence in 
using a measurement since they can see the variance between sensor measurements. We do not 
validate thermodynamic consistency beyond these metrics but they should give the user enough 
context to determine if the fused data product is viable for their use case. To detect short-term 
anomalies, the fused layer is subtracted from the previous hour of the GFS data (Figure 3-5). This 
provides an hourly measurement of SST change, the use case of which depends on a scientist’s 
interest. For example, a change of 1° K in an hour may be deemed normal while a change of >5° 
K would highlight an area requiring further investigation. 

 
Figure 3-4 SST Measurements. From 1. GFS, 2. VIIRS, and 3. GOES visualized in Agatha. 

We initially built and studied a convolutional autoencoder for anomaly detection. It was trained 
on GFS data as truth, which would take in SST data from sensors, reconstruct that data, and use 
absolute error between the reconstructed data and the input data, per pixel, to determine any spikes 
or wells in temperature (Figure 3-6). However, this solution proved to be overengineered for the 
problem (especially with globally available GFS data) and we reverted to a simpler methodology. 
In addition, anomalies in higher resolution data did not present well since we trained the 
autoencoder on relatively low resolution GFS data. We recommend using high-resolution data if 
a similar approach is pursued for a future digital twin to make sure that sensor anomalies can be 
detected. Although we did not implement this approach for SST anomaly detection, we did show 
that both AI-based and numerical methods can easily be applied in our plug-and-play framework. 
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Figure 3-5 SST Data Fusion, Anomaly Detection, # of Sensors, and Standard Deviation. 

 
Figure 3-6 Preliminary Results from a Convolutional Autoencoder Reconstruction  

and Absolute Error for Sea Surface Temperature. 
3.1.4.2 3D Temperature and Moisture Profiles 
To investigate 3D temperature and moisture profiles in out EO-DT prototype, we explored ground- 
and satellite-based observations along with GFS output. Our ground-based observations come 
from the IGRA which consists of radiosonde and pilot balloon observations from more than 2800 
globally distributed stations with data including pressure, temperature, geopotential height, 
relative humidity, dew point depression, wind direction and speed, and elapsed time since launch 
(Durre et al., 2018). These observations were preprocessed by NOAA to 20 evenly spaced vertical 
pressure levels (1000 mb to 50 mb at 50 mb spacing) and provided in NetCDF format for 
temperature and moisture profiles (Figure 3-7). 
In addition to ground-based observations, we ingested and processed observations from ATMS 
combined with GFS model output in a NOAA developed AI/ML algorithm, MIIDAPS-AI, which 
infers atmospheric parameters including temperature and moisture profiles, and is orders of 
magnitude faster than traditional remote sensing algorithms while using far fewer resources. 
MIIDAPS-AI has been successfully applied to infrared, microwave, polar and geo sounders and 
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imagers and can also be used for satellite observation preprocessing for data assimilation, data 
fusion, and more (Maddy & Boukabara, 2021). For our demonstration, we containerized this 
algorithm (Appendix Section 4) and implemented it into our pipeline (Section 3.1.4, Figure 3-3). 
We processed and display MIIDAPS-AI output at four meteorologically relevant pressure levels 
(1000 mb, 750 mb, 500 mb, 250 mb) on a 2D surface (Figure 3-7). For direct comparison, we also 
integrated GFS model output of temperature and specific humidity at the same four pressure levels 
at an hourly interval (Figure 3-8 and Figure 3-9). 
We did not implement data fusion for 3D temperature and moisture profiles as GFS is an input to 
MIIDAPS-AI and IGRA data was irregularly available at different times and sites. However, we 
highly recommend as part of a future study to determine how to best fuse gridded and point data 
into a product on non-regular spatial and temporal scales. 

 
Figure 3-7 IGRA data and MIIDAPS output. 1. 3D temperature profile from 20 vertical 

levels of IGRA data and 2. MIIDAPS output visualized in Agatha. 

 
Figure 3-8 GFS Model Output of Temperature at Four Vertical Levels. 

1. 1000 mb, 2. 750 mb, 3. 500 mb, 4. 250 mb visualized in Agatha. 
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Figure 3-9 GFS Model Output of Humidity at Four Vertical Levels. 

1. 1000 mb, 2. 750 mb 3. 500 mb, 4. 250 mb visualized in Agatha. 
3.1.4.3 Sea Ice Concentration 
Our EO-DT prototype demonstrates SIC at both the north pole (NP) and south pole (SP) using 
daily global GFS model output, AMSR-2 satellite observations, and a high-resolution blended 
AMSR2/VIIRS product (Figure 3-10). GFS data is available hourly, though changes in SIC are 
largely relevant daily, thus the GFS model output layer is representative of the 0th and 18th hours 
averaged together. Our NOAA processing pipeline fused data using the blended AMSR2/VIIRS 
product and GFS at both poles. Similar to SST, we created a metric in the SIC output metadata 
which provides a count of the number of sensors that see an observation of SIC in the pixel and a 
standard deviation between the fused data source inputs (Figure 3-11). Our approach for anomaly 
detection included taking the absolute difference between our fused daily SIC product and the 
median extent from 1981–2010 for that day of the year (Figure 3-11), following similar methods 
as are employed for the products displayed on the National Snow and Ice Data Center’s website 
for SIC. The median extent product was only available in the Arctic so our anomaly product is 
limited to the NP. 
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Figure 3-10 Sea Ice Concentration Data.  

GFS (SP), GFS (NP), AMSR2 (NP), AMSR-2 (SP), Blended AMSR2/VIIRS (NP). 

 
Figure 3-11 Fused Sea Ice Concentration from GFS and the blended VIIRS/AMSR2 

product, Anomalous SIC, Number of Sensors, and standard deviation of SIC. 
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3.1.4.4 Fire Product 
In our EO-DT prototype, we studied fire products using GOES ABI and VIIRS (Figure 3-12). We 
mapped values to confidence levels of fire which are outlined in Appendix Section 3.2 in Tables 
A-4 and A-5. These sensors represent geostationary and polar orbiting fire products to capture the 
best possible spatial and temporal resolution. Our NOAA processing engine filtered based on data 
quality flags to remove sensor anomalies based on the instrumentation for GOES and VIIRS. Our 
prototype does not include fire anomaly detections outside metadata flags as that is an ongoing 
area of research. To provide a relative simple solution for anomalies, we recommend to filter fires 
on known areas of biomass burning, flares, etc. through a trusted global database. 

 
Figure 3-12 GOES (left) and VIIRS (right) Fire Data. 

3.1.4.5 Space Weather 
To demonstrate space weather in our EO-DT, we used the Faraday cup and magnetometer on the 
Deep Space Climate Observatory (DSCOVR) to derive the magnetic shear across the 3D 
magnetopause surface, using solar wind bulk plasma and the solar wind magnetic field (Trattner 
et al., 2021) (Figure 3-13). This is useful for predicting where magnetic reconnection is likely to 
occur, which transports solar wind plasma and energy into the magnetosphere, conditioning the 
magnetotail for the occurrence of geomagnetic substorms. Similar to MIIDAPS-AI we 
preprocessed this data prior to ingesting into the NOAA processing engine, though instead of a 
container we used a set of interactive data language scripts (detailed in Appendix Section 3.1). We 
output this data in a similar ECEF grid to the other geophysical variables but through feedback in 
the program we would recommend looking into Geocentric Solar Magnetospheric (GSM) 
coordinates which would be more appropriate in the future. We found integrating space weather 
into the same digital twin framework that dealt with surface or tropospheric Earth system 
domains difficult due to the magnitude of scale difference and juxtaposing ideal reference 
coordinate systems. From this we learned that a unified single digital twin may not be the 
best way to represent all Earth system domains especially for space weather which may 
require its own individual digital twin framework (Recommendation 2.4). We did not perform 
data fusion or anomaly detection for space weather for our EO-DT prototype. 
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Figure 3-13 Solar Wind Magnetic Shear Derived from DSCOVR Observations. 

3.2 NOAA PROCESSING ENGINE: TILING INTO UBER H3 
Once data is processed and fused and the NOAA processing engine detects anomalies, it is tiled 
into the Uber H3 tiling scheme which provides uniform, global data resolution, ensuring precision 
in spatial analysis (Figure 3-14). We chose this tiling scheme since it is better represented at the 
poles than other tiling systems. Uber H3’s hierarchical structure supports multi-resolution analysis 
for both detailed and broad perspectives, streamlining geospatial data processes for efficiency and 
accuracy. Each tile has a persistent, georeferenced index. This unique identifier allows for swift 
and precise reconstruction of cells based solely on this value. Its persistent nature means it is 
accessible to both the backend and frontend, enabling quick, collaborative reconstructions of the 
tiles. The benefit of the NOAA processing engine’s plug-in based architecture is that it can 
facilitate flexible handling and interoperability with multiple tiling systems, as might be needed to 
incorporate data from other agencies (e.g., NASA). To prove this out in out prototype, in addition 
to Uber H3, we also tested and verified that Google S2 worked as an alternative and could integrate 
others that conform to the globally consistent and hierarchal structure. 

 
Figure 3-14 Uber H3 Tiling System. Image Shows Multiple Resolutions of the Hexagonal Tile 

System with more Granular Resolutions from left to right. 
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3.3 NOAA PROCESSING ENGINE: FORMATTING INTO OPENUSD 
A key challenge that our EO-DT must address is the aggregation and composition of multiple 
observational data layers that together create a holistic digital replica of the state of Earth. Our EO-
DT uses OpenUSD (Universal Scene Description framework) to compose and store 3-D geospatial 
information and support arbitrary domain-specific metadata, extensibility, and interoperability 
among diverse simulation and collaboration workflows and applications. OpenUSD allows EO-
DT to represent the entire Earth using a hierarchy of USD files, each containing groups of 
aggregated tiles (e.g., using the Uber H3 tiling system at particular resolution levels), permitting 
observational data to be efficiently fetched on demand and cached according to the needs of the 
Agatha viewer or other client applications. The EO-DT observational data is represented 
geometrically using USD points and triangle mesh primitives, with measured quantities stored as 
attributes on the geometric primitives themselves or encoded into quantized texture maps stored 
in PNG files referenced by the USD files. Since the key EO-DT observations are encoded in 
standard USD geometric primitives and texture maps, a broad range of 3-D viewers, editors, design 
and simulation tools can directly load and operate on the data. To enable general tools to correctly 
display EO-DT observation layers, the NOAA processing engine assigns appropriate default color 
maps to the quantized PNG texture maps so that no domain-specific knowledge of the data is 
required for correct display in a 3-D viewer. OpenUSD supports XML-like extensibility by 
allowing user-defined attributes to be assigned to data objects, and EO-DT uses these mechanisms 
to encode metadata about observations so that it is embedded and thereby inseparable, but does 
not necessarily have to be processed or interpreted by software tools or workflows that do not 
require it. OpenUSD supports the definition of formal schemas for attributes and metadata 
extensions to help ensure interoperability and correctness. 
3.4 NOAA PROCESSING ENGINE: AGGREGATION SCHEME 
Next, the NOAA processing engine pipeline post-processes the tile hierarchy into aggregate groups 
of tiles together. This helps to achieve balance between granularity of file-level access, caching, 
transmission, and undesirable overheads that can arise from excessively-fine-grained approaches. 
By aggregating groupings of spatially neighboring tiles together into the same OpenUSD file, the 
NOAA processing engine cloud service I/O performance is improved, performance of staging and 
updates to observation data into the Omniverse Nucleus service are improved, and client-side 
OpenUSD parsing overheads are collectively reduced, while still avoiding excess data 
transmission during on demand streaming to remote clients. The tiles are represented in OpenUSD 
files as ‘prims’ which retain their attributes and metadata and can still be directly individually 
referred to and accessed by their own Uber H3 indices as they were prior to aggregation into 
OpenUSD files. 
3.5 NOAA PROCESSING ENGINE FILE TRANSFER TO OMNIVERSE NUCLEUS 
At the point when the NOAA processing engine has generated OpenUSD files containing 
aggregated tiles of EO-DT observational data, the set of USD and PNG files covering the 
observational data layer for a given time sample must be transferred to the Omniverse Nucleus 
service instance that serves all clients. To perform this bulk data transfer efficiently, the NOAA 
processing engine makes use of the Omniverse client library and its associated APIs. The 
combination of the NOAA processing engine USD output and the Omniverse client library are 
collectively referred to as the EO-DT Omniverse ‘connector’ between the NOAA processing 
engine and the Omniverse Nucleus service. To permit out-of-band debugging, testing, and 
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maintenance, the Omniverse Connect software development kit includes a standalone command 
line ‘omni client’ tool that performs the same bulk transfer operations that the NOAA processing 
engine implements internally. 
3.6 OMNIVERSE NUCLEUS 
A key element of constructing digital twins is the requirement for a data store that: 

• Maintains the state of the twin 
• Ensures data integrity, user authentication, and security 
• Enables multi-user and multi-site collaboration 
• Acts as an arbiter of competing operations on the twin data 

 

The Omniverse Nucleus service is a high-performance object store that serves in this role for EO-
DT. EO-DT’s Nucleus service instance uses a cloud-based deployment that permits a natural and 
high-performance coupling with the NOAA processing engine pipeline. This brings in new 
observational data and remotely located Agatha users on the Internet at large. To permit scalability 
to large numbers of remote users and help overcome sources of communication latency such as 
firewalls, VPNs, and long-haul networks, Omniverse provides a Nucleus Cache service. Nucleus 
caches can be placed in performance-advantageous locations in a local or regional network and be 
chained hierarchically, thereby greatly reducing the amount of read-mostly EO-DT data sent to 
remote users, particularly at shared offices or other sites supporting multiple client users. The 
reduction of EO-DT data egress from AWS EC2 to remote users reduces operational costs 
accordingly. Nucleus supports versioning of files, concurrent editing of versions of the same files, 
publish-subscribe update notifications, and live-update sessions for clients. The versioning and 
collaboration components of the Omniverse Nucleus service design make it particularly well suited 
as a hub for connecting the constituent services that make up a digital twin to the clients that 
interact with it. While Nucleus is optimized for storage and transmission of OpenUSD, raster 
images (PNG, GeoTIFF, and similar), and volumetric grids (VDB and similar), it supports any file 
or data format, including NetCDF or HDF5 as examples relevant for EO-DT. Refer to Appendix 
Section 7 for Omniverse Nucleus setup instructions. 
3.7 NOAA PROCESSING PIPELINE METRICS 
As part of our study, we provide metrics on the amount of data and resources available to process 
using the full static NOAA processing engine pipeline (Section 3.1.1). The full pipeline for one 
time step consists of downloading files from S3 using the data input service, processing raw data, 
applying data fusion and anomaly detection algorithms, tiling into the UberH3 format, aggregating 
USD files, and writing final output files to Omniverse Nucleus for each data example from each 
Earth system domain. For the entire two week window across all domains we process over 7 
TB of raw data down to ~130 GB in USD file format.  

Table 3-1 SST. 

Sensor  
Files per 

Hour  
Data Size 
Ingested  

Time to Process 
(Workstation)  

Time to Process 
(AWS EC2 Instance)  

GOES East and West  2  36M  00:01:28  00:00:33  
VIIRS  6  3.1M  00:00:09  00:00:06  
GFS  1  331M  00:00:16  00:00:14  

One Time Step  10  1.4G  00:04:09  00:02:15  
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Table 3-2 Fire. 

Sensor  
Files per 

Hour  
Data Size 
Ingested  

Time to Process 
(Workstation)  

Time to Process 
(AWS EC2 Instance)  

GOES East and West  4  1.7 M  00:01:37  00:00:22  
VIIRS  6  1.2 M  00:00:11  00:00:06  

One Time Step  10  14 M  00:07:34  00:02:04  
 

Table 3-3 SIC. 

Sensor  
Files per 

Day  
Data Size 
Ingested  

Time to Process 
(Workstation)  

Time to Process 
(AWS EC2 Instance)  

AMSR-2  1  27 M  00:00:06  00:00:04  
Blended 

VIIRS/AMSR-2  
2  318M  00:05:18  00:01:18  

GFS  1  1 GB  00:00:25  00:00:11  
One Time Step  4  1.4 GB  00:05:55  00:01:37  

 

Table 3-4 ATMS. 

Sensor  
Files per 

Hour  
Data Size 
Ingested  

Time to Process 
(Workstation)  

Time to Process 
(AWS EC2 Instance)  

IGRA  N/A  37 KB  00:00:01  00:00:01  
MIIDAPS  1  27 M  00:00:35  00:00:11  

GFS  1  13 GB  00:03:15  00:02:09  
One Time Step  4  13.28 GB  00:04:12  00:02:50  

 

Table 3-5 Space Weather. 

Sensor  
Files per 

Hour  
Data Size 
Ingested  

Time to Process 
(Workstation)  

Time to Process 
(AWS EC2 Instance)  

DSCOVR  10  2.7 KB  00:00:01  00:00:01  
One Time Step  10  2.7 KB  00:00:01  00:00:01  

 

3.8 OMNIVERSE NUCLEUS TO AGATHA FILE TRANSFER 
After final OpenUSD and NetCDF files are output to the Omniverse Nucleus service, our frontend, 
Agatha, must retrieve them. Agatha provides a detailed display of user-selected EO-DT 
observational data layers and metadata. To achieve and maintain its high-interactivity, Agatha 
gathers EO-DT observational data on demand in a streaming manner from the connected 
Omniverse Nucleus service. Agatha uses the view frustum, incident angle of tiles visible on the 
Earth’s surface, and user preferences to determine the specific EO-DT tiles that must be fetched 
and their required resolution level. By virtue of the Uber H3 tile indexing mechanism, Agatha can 
fetch only those OpenUSD and PNG files containing the relevant tiles at the required resolution. 
Like the NOAA processing engine, Agatha directly incorporates the Omniverse client library and 
therefore can directly transfer files from Omniverse Nucleus with high-performance. The 
combination of Agatha’s incorporation of OpenUSD and the Omniverse client library are 
collectively referred to as Agatha’s Omniverse ‘connector,’ a mirror image of what is implemented 
in the NOAA processing engine. 
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3.9 AGATHA VISUALIZATION INTERFACE AND FEATURES 
Agatha is the visualization frontend of the EO-DT which provides users with an intuitive and high-
resolution interface to interact with their data. This component is a Windows-based application 
that runs natively on a laptop or desktop and requires a graphics processing unit (GPU) to run. For 
our study we used both standard Agatha features along with custom features built specifically for 
this program outlined in Table 3-6 and shown in Figure 3-15 (Recommendation 3.2) and Figure 
3-16 (Recommendation 3.2). One example of a custom feature we implemented was NOAA 
themed colormaps (e.g., topo, grid3d, icing, HRRR Reflectivity, etc.) which can be dynamically 
changed when running the application. Many features of Agatha are easily editable by the 
configuration file and parameters within, described in Appendix Section 8. To build a digital 
twin, we recommend using a flexible visualization tool where features can easily be added 
and customized for various user skill levels and use cases (Recommendation 3.2). 

Table 3-6 Standard and Custom Features Implemented in Agatha. 
Feature  Type  Description  

Globe interface  Standard  Can be panned around using the cursor.  
Zoom  Standard  Move closer and farther away from the Earth’s surface.  
Timeline 
interface  

Standard  Allows user to step through individual time steps of each data 
type and a start, pause, and advance feature which allows the 
data to play on a loop.  

Sun, globe, and 
country outlines  

Standard  Toggle on and off the sun reflection, background globe 
imagery, and country outlines on demand.  

Layers toggle  Standard  Toggle on and off different layers of data.  
Location search  Custom  Automatically place the center screen point to a certain location 

on Earth.  
Dynamic color 
bar values  

Custom  Change the minimum and maximum color bar values on the fly 
to view different ranges.  

Dynamic color 
bar gradient  

Custom  Change the color map of the color bar using preset ranges and 
insert custom color maps through the configuration file.  

Metadata viewer  Custom  View metadata on files including time ranges, value ranges, 
source filenames, time intervals, domains, etc.  

Sample values  Custom  Clicking on the globe will let user sample point values 
including their latitude, longitude, value, and time stamp.  
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Figure 3-15 Highlighting Agatha’s Features of the Global Interface. 

Image includes zoom, sun, globe, and country outlines, dynamic color bar values 
from the legend, location search, and toggling on/off layers. 

 
Figure 3-16 Highlighting Agatha’s Features. Image includes sample values, timeline 

interface, metadata viewer, and dynamic color bar gradient. 



NOAA EO-DT November 2024 

23 

4 PROTOTYPE AND ESTIMATED OPERATIONAL COSTS 
During prototype development, cloud resource use was sporadic, making it impossible to precisely 
extrapolate operational costs from the development phase. To estimate a reasonable cost for an 
operational prototype, we used the AWS Pricing Calculator. 
For estimating prototype operational costs, we gathered input parameters for two operating modes: 

1. Continuous processing of hourly SST data 
2. Processing a 2-week window of data from all domains for this prototype 

 

Both operating modes assume a simple implementation of the prototype—particularly regarding 
Amazon EC2, where OR3D and Omniverse Nucleus each run on a single EC2. More advanced 
deployments could be used operationally. For example, Nucleus functions could be split across 
multiple EC2s. Doing so allows for scaling Nucleus functionality (e.g., storage/processing and 
data egress) independently. OR3D could also use Amazon Fargate to optimize processing loads. 
Configuring the AWS Pricing Calculator allows the user to control cost-driving variables for each 
service. Table 4-1 shows examples of services and parameters of interest for this prototype. 

Table 4-1 AWS Configuration Parameters of Interest. 
AWS Pricing 

Calculator Service Configuration Parameters of Interest 
Amazon Simple Storage 
Service (Amazon S3)  

• Storage size 
• Data transfer frequency, volume, and type  

Amazon Elastic Compute 
Cloud (Amazon EC2)  

• Workload frequency 
• Central processing unit 
• Memory 
• Network bandwidth 
• Utilization 
• Data transfer requirements  

Amazon Lambda  • Request frequency 
• Memory 
• Ephemeral storage  

Amazon DynamoDB  • Storage size 
• Average item size 
• Write type and rate 
• Peak activity duration  

 

Table 4-2 displays the estimated costs for continuously processing SST data. We eliminated a $2 
per hour fee for each region with dedicated EC2s from the calculations, assuming NOAA  
would already have EC2s operating in the region. Use of the AWS Lambda service fell within the 
free tier threshold. 
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Table 4-2 SST Hourly Live Processing Cost. 
Prototype 

Component  Service  Upfront  Monthly  Annual  Configuration Summary  
Data transfer 

from data 
source  

S3 Standard  $0  $24  $284  • S3 standard storage (1 TB per 
month) 

• S3 standard average object 
size (50 MB) 

• PUT, COPY, POST, LIST 
requests to S3 standard 

• (20000) 
• GET, SELECT, and all other 

requests from S3 Standard 
• (20000)  

OR3D  AWS 
Lambda  

$0  $0  $0  • Invoke Mode (Buffered) 
• Architecture (x86) 
• Architecture (x86) 
• Number of requests (10000 

per month) 
• Amount of ephemeral storage 

allocated (512 MB)  
OR3D  DynamoDB 

provisioned 
capacity  

$180  $12  $328  • Table class (standard) 
• Average item size (all 

attributes) (1 byte) 
• Write reserved capacity term 
• (1 year) 
• Read reserved capacity term 
• (1 year) 
• Data storage size (1 GB)  

OR3D  Amazon 
EC2  

$0  $69  $826  • Tenancy (dedicated instances) 
• Operating system (Linux) 
• Workload (consistent, number 

of instances: 1) 
• Advance EC2 instance 
• (c6i.16xlarge) 
• Pricing strategy (on demand 

utilization: 2 hours/day) 
• Enable monitoring (disabled) 
• EBS storage amount (512 GB) 
• DT inbound: not selected (0 

TB per month) 
• DT outbound: not selected 

(365 GB per month) 
• DT intra-region: (0 TB per 

month)  



NOAA EO-DT November 2024 

25 

Prototype 
Component  Service  Upfront  Monthly  Annual  Configuration Summary  
Omniverse 

Nucleus  
Amazon 

EC2  
$0  $418  $5,016  • Tenancy (dedicated instances) 

• Operating system (Linux) 
• Workload (consistent, number 

of instances: 1) 
• Advance EC2 instance 
• (r7a.xlarge) 
• Pricing strategy (on demand 

utilization: 24 hours/day) 
• Enable monitoring (disabled) 
• EBS storage amount (1 TB) 
• DT inbound: not selected (0 

TB per month) 
• DT outbound: not selected (1 

TB per month) 
• DT intra-region: (0 TB per 

month)  
Total    $180  $523  $6,454    

 

Table 4-3 shows estimated costs to process a single 2-week time window of all prototype variables. 
Table 4-3 2-week Data Set Processing Cost. 

Prototype 
Component  Service  Cost  Configuration Summary  

Data 
transfer 

from data 
source  

S3 
Standard  

$83  • S3 standard storage (7 TB per month) 
• PUT, COPY, POST, LIST requests to S3 standard 

(35000) 
• GET, SELECT, and all other requests from S3 standard 

(35000) 
• S3 standard average object size (200 MB)  

OR3D  Amazon 
EC2  

$129  • Tenancy (dedicated instances) 
• Operating system (Linux) 
• Workload (consistent, number of instances: 1) 
• Advance EC2 instance (c6i.16xlarge) 
• Pricing strategy (on demand utilization: 82 hours/month) 
• Enable monitoring (disabled) 
• EBS storage amount (512 GB) 
• DT inbound: not selected (0 TB per month) 
• DT outbound: not selected (365 GB per month) 
• DT intra-region: (0 TB per month)  
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Prototype 
Component  Service  Cost  Configuration Summary  
Omniverse 

Nucleus  
Amazon 

EC2  
$418  • Tenancy (dedicated instances) 

• Operating system (Linux) 
• Workload (consistent, number of instances: 1) • Advance 

EC2 instance (r7a.xlarge) 
• Pricing strategy (on demand utilization: 100% 

utilized/month) 
• Enable monitoring (disabled) 
• EBS storage amount (1 TB) 
• DT inbound: not selected (0 TB per month) 
• DT outbound: Internet (1 TB per month) 
• DT intra-region: (0 TB per month)  

Total    $630    
 

The highest cost services were associated with always-on infrastructure used for the prototype. 
This was due Omniverse Nucleus’ need to be continuously available for data egress to Agatha and 
for receiving newly processed data from OR3D during development, which prevented on demand 
or scheduled utilization approaches that would increase operating efficiency. As the volume of 
users increase and the volume of outgoing data from the Nucleus EC2 increases commensurately, 
costs increase linearly with the volume of outbound data (can range from $50 to $90 per TB). This 
was not an issue during the prototype as there was only one Agatha user. Other prototype 
component costs are not directly impacted by number of users. 
We recommend investigating AWS cost optimization strategies (Recommendation 2.5)  
such as: 

• Using caching servers on NOAA networks accessible by scientists would reduce the 
volume of data egress traffic from the Omniverse Nucleus EC2 to Agatha. The cost 
efficiency improvements provided by a caching service would depend on the number 
users on the networks with cached data. 

• Adding the ability for Nucleus EC2 to ‘spin down’ when there are no active Agatha 
users. This also requires modifying O3RD to intermittently push updates to the 
Nucleus EC2. 

• Using AWS Fargate to optimize EC2 processing. 
 

5 INTEROPERABILITY AND STANDARDIZATION WITH OTHER 
Digital Twins 
One main goal of our study was to provide recommendations for standardization and 
interoperability with other digital twins being developed by academia, industry, and other 
Government agencies. To do this, we searched literature and reports and attended conferences, 
workshops, and seminars to understand the current state of other digital twins being developed for 
various purposes. We found that most other digital twin programs focusing on Earth science have 
similar goals to the NOAA EO-DT prototype objectives and are planning development initiatives 
on multi-year timelines. We also found that although the concepts are similar, there is a disconnect 
between the programs at a foundational level on requirements, standards, and formats which could 
slow future opportunities for interoperability. In this section, we focus on recommendations for 
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current development to remain agile as requirements are defined and outline recommended 
collaboration between programs. 
5.1 FLEXIBILITY AND INTEROPERABILITY OF THE LM-NVIDIA EO-DT 
To achieve the flexibility and interoperability needed to interact with other digital twins, our study 
used multiple file formats, data types, algorithm interactions, tiling systems, and visualization 
tools. From our study, we recommend a flexible digital twin architecture which has the 
following components: a data archive, a common data file formatter, a data input service, a 
service for containerized algorithm processing which outputs to a common processed file and 
a tiled processed file (Figure 5-1) (Recommendation 1.1). Tiled processed output should be 
easily composable, enabling flexible aggregation of data layers and hierarchies. These files should 
be accessible by both interactive visualization tools and user interfaces, and in an accessible user 
repository. This general schema provides the flexibility within both large and small scale digital 
twins to represent simple and complex processes. Of course there will be additional specific work 
for each individual initiative, however this skeleton framework should be easily adapted to a 
variety of use cases. More specifically, the NASA ESDT defined their architecture framework 
with an observational data repository, ingest subsystem, digital twin information subsystem 
(including a digital replica, digital twin record, and external repositories for source data), nominal 
forecast subsystem, impact assessment subsystem, control and monitor subsystem, and user 
interface (Le Moigne et al., 2023). This framework is broader than our prototype which only maps 
to their ingest subsystem, digital twin information subsystem, and user interface, though the 
overlaps that do occur are in agreement. 

 
Figure 5-1 Recommended Digital Twin High-Level Architecture. 

We ingested data coming from ground and space-based assets along with model data which cover 
both point and gridded raster data types. For some use cases, we built custom algorithms to take 
point data and transform it into a raster if it was efficient and fit the use case. It was then projected 
into an ECEF coordinate system. From our study, we recommend that the NOAA EO-DT has a 
method to ingest both point and raster data independently since data types vary so widely 
from sensors and models (Recommendation 2.1). To further standardize data, we recommend 
NOAA chooses a single coordinate system depending on the type of digital twin and use case 
to re-grid and standardize all data into a common spatial grid across all similar Earth system 
domain sensors (Recommendation 2.1). ECEF works for most Earth centered measurements like 
SST, SIC, temperature, moisture, and fire, however we ran into many issues with using ECEF for 
space weather data. We recommend using the GSM coordinate system to best integrate space 
weather data such as solar wind magnetic shear (Recommendation 2.4). 
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In addition to data types and coordinate system standardization, we studied a wide variety of data 
formats (e.g.,.nc,.txt,.tiff, etc.). With NOAA’s current data system architecture, we found 
NetCDF4 files to be the most common and did not see a large performance decrease even with a 
non-cloud-optimized file format with the amount of data we ingested, though we did not stress test 
beyond our 2-week window for our prototype dataset. This may impact processing time on an 
operational scale with terabytes of data incoming. Although our backend can ingest any of these 
data formats, we found that standardizing to one data format made ingestion more efficient. 
Modern NetCDF4 supported by a suite of Open Geospatial Consortium (OGC) standards, and is 
built upon HDF5. HDF5, and thus NetCDF, are expected to benefit from ongoing technical 
evolution and advances that will permit direct and highly efficient GPU-accelerated I/O within AI 
data processing pipelines. Further, anticipated work within NVIDIA on open source submissions 
to HDF5 for optimized access to object stores will benefit digital twin projects using AWS S3 and 
Omniverse Nucleus. A 2020 NASA study on cloud-optimized file formats included evaluation of 
HDF5, NetCDF, GeoTIFF, nascent cloud-optimized variants, and other popular file formats 
against a variety of criteria relevant to EO-DT and digital twins generally. We recommend using 
file formats that support flexible incorporation of arbitrary metadata ( e.g., XML, OGC 
NetCDF, OpenUSD, and similar) to ensure complete data provenance continuity, to permit 
incorporation of RDF knowledge graph tags, and to provide visualization tools and user 
interfaces to exploit the use of metadata to improve performance and user experience 
(Recommendation 2.2). We expect that accelerated AI data processing I/O performance, 
extensibility, and several of the evaluation criteria in the NASA report will remain highly relevant 
for implementing digital twins of Earth. We recommend choosing one common observational 
data format and requiring users to provide data in that standard format prior to the digital 
twin ingesting it or using a common data file formatter (Recommendation 2.1). 
A major issue we ran into was non-standard metadata. This included flags, units, scaling, and data 
naming conventions. Each instrument and model has their own standards which makes ingesting, 
comparing, fusing, or analyzing each different sensor data type difficult because you have to refer 
to individual documentation for each. We would recommend NOAA either provide more data 
standardization for all NOAA data products, or provide a preprocessing step prior to digital 
twin ingestion through a data template or with a configuration file (Recommendation 2.1). 
Having a data template or configuration file that users interact with to define or map their particular 
data to common required parameters (e.g., variable names, datetime, units, flags, EPSG projection) 
prior to ingestion will be essential for a wide variety of users to interact easily with the EO-DT. 
We also recommend using RDF tags in observational databases to make the immense amount 
of data coming into NOAA’s system from satellites, ground-based observations, and model 
output easily usable and ingestible into a digital twin architecture (Recommendation 2.3). 
Regardless, the digital twin will only run as well as the data provided to it so these initial data 
preprocessing and ingestion steps are vital to creating a successful system. 
Once the data is successfully preprocessed, ingested, and put into a common spatiotemporal grid, 
any algorithms can be applied. We recommend that NOAA’s digital twin prototype has built 
in algorithms for data fusion and anomaly detection using simple methodologies like linear, 
bilinear, or cubic interpolation options and subtracting from a previous timestep to show 
how data is changing on a short time scale (Recommendation 2.1). There could also be cached 
datasets to see how data is changing on a longer time scale. These simple algorithms would provide 
users with the ability to do quick comparisons with low processing costs, as opposed to large-scale 
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custom algorithms for each user. In addition, our system provides a plug-and-play algorithm 
system which we applied the MIIDAPS algorithm to as a preprocessing step (Figure 3-3). We 
recommend that a standardized template is used for algorithms defined for the digital twin 
so inputs and outputs can plug in and be integrated more seamlessly (Recommendation 2.1). 
Providing customized algorithm support for each user, especially on complex containerized 
algorithms with multiple different data types would require additional development. 
In our study, we tested both Uber H3 and Google S2 hierarchical tiling systems which are two of 
the most popular tiling systems. We chose the Uber H3 tiling system since it is well represented at 
the poles with its hexagonal tiling scheme, compared to Google S2’s rectangular scheme. Its 
persistent, georeferenced index identifier that is accessible to both the backend and frontend allows 
for swift and precise reconstruction of cells and tiles, and easy incorporation of tiles into on-disk 
file formats such as NetCDF and OpenUSD. Uber H3 provides extensive online documentation 
allowing for easier development compared to Google S2. In addition to tiling systems, we also 
looked into different tile formats including the Cesium OGC 3-D Tiles Community Standard and 
OpenUSD, which are both compatible with our frontend visualization. Tiled processed outputs 
were written in OpenUSD format, enabling interoperability with a large ecosystem of other 
software tools. The data aggregation flexibility OpenUSD provides and standards being developed 
within the Alliance for OpenUSD permit aggregation and composition of EO-DT data with a wide 
variety of other complementary geospatial, architectural, and built environment data types and 
sources (Cozzi, 2023; OpenUSD, 2023). OpenUSD’s support for flexible incorporation of schemas 
and metadata has led to widespread use for synthetic data generation for AI training, where 
semantic labeling is required. Ongoing development of a standard semantic schema for OpenUSD 
is anticipated to benefit a broad range of cases by specifying a high-performance implementation 
approach but without defining specific semantics, taxonomies, or ontologies. A recent 
implementation of interactive taxonomy computation, label resolution and display has been 
developed for incorporation into Pixar's USDView, achieving near-instantaneous response, even 
for deep OpenUSD prim hierarchies. We anticipate the ongoing work to standardize encoding 
semantic information in OpenUSD will directly benefit EO-DT and similar geospatial use cases 
that could leverage knowledge graphs and semantic labels in a wide variety of uses. 
We also studied how best to visualize data and tested our output with multiple viewers including 
Agatha, Pixar USDView, and NVIDIA Omniverse/Earth2 (Figure 5-2). In our prototype we 
quantized values in the USD and PNG files per time step, thereby dramatically reducing data 
storage and transmission requirements for visualization by end users, with commensurate 
reductions in data egress operational costs. The underlying observational data is quantized and the 
quantized numeric values directly reference a color map, with a default color scale encoded in the 
files on-disk and subsequently transmitted for viewing by Agatha. We note that any choice of a 
single quantization approach could potentially result in unacceptable loss of precision for some 
data, or for accuracy-sensitive uses not envisioned. Therefore, we recommend that aggressive 
quantization and compression techniques be used where and when possible, but that it will 
remain necessary for visualization software to also be able to perform its own color transfer 
functions on full-precision floating point data as well (i.e., sending the raw data information 
from the back end or from a cloud service that responds to full-precision quantitative data analysis 
queries, and not a quantized or loss-compressed output) (Recommendation 2.6). While we 
presently use a single scheme, in a production implementation, there should be options to use 8-
bit or 16-bit quantized representations, as well as 32-bit or 64-bit floating point, depending on the 
particular data and use case combination being served. In the end, we recommend taking a 
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quantization or compression approach based on the precision and cost driven by the 
individual use case (Recommendation 2.6). 

 
Figure 5-2 EO-DT Data Displayed in Three Separate Viewers a) Agatha, b) Earth-2, and c) 

Pixar USD to Demonstrate Interoperability with the OpenUSD File Format. 
Lastly, we learned that working with 3D point data (e.g., IGRA) in our visualization was especially 
difficult since Agatha mainly performs well showing surface level data. In Agatha, a custom 
feature was added to have a 3D zoom to show 20 vertical levels but we view this as a preliminary 
feature that needs more development and user feedback to be useful by intended users. Features 
like temperature profiles at such a high vertical resolution may be best to visualize by a more 
standard view in a 2D skew-T plot instead for practical applications (Recommendation 3.2). 
For our fusion algorithm, Agatha does not know which sensor measurements go into fused and 
anomalous data so a potential future task which would benefit users is to track that in metadata so 
they can dynamically turn on and off sensors in those algorithms from the frontend. Finally, Agatha 
does require a GPU to run the desktop application we provide as part of our prototype for high 
quality performance. For the most flexible platform for users we recommend further looking 
into web-based applications or streaming to remove the resource requirement for digital 
twin visualization (Recommendation 3.2). 
5.2 INTEROPERABILITY WITH OTHER DIGITAL TWINS 
As part of our study, we looked at the development of other digital twins such as NASA ESDT, 
Digital Twins of the Ocean (DITTO), Destination Earth, and NVIDIA’s Earth-2. We also 
investigated the Digital Twin Earth Framework Specification (DTE-FS) which is useful in guiding 
construction of a model-based framework that enables implementation of a multi-viewpoint, 
evolutionary, and communally managed DTE that is represented as a syntactically, schematically, 
semantically, and legally interoperable system of systems (Berkheimer, 2022; Berkheimer, 2023). 
With multiple digital twin programs occurring and being developed in parallel, there needs to be 
a central authority to define standards so they can be adapted to a common platform. Our EO-DT 
prototype mainly focused on building a flexible platform to provide recommendations in alignment 
with the DTE-FS, but it was often difficult to make architectural decisions on implementation 
when universal standards are not set to transition to an operational digital twin. There are also 
many open source frameworks already in use for data processing like OpenEO, funded by the 
European Space Agency and to potentially be used in DestinE, and data/metadata sharing (e.g., 
Ocean Data and Information System (ODIS) used by DITTO) which should be considered to 
provide common standards and requirements to be adopted. We recommend coordination 
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between digital twin programs to adopt common standards for interoperability since the 
goals of each program align fairly directly (Recommendation 3.1). 
NASA’s ESDT is led by NASA AIST and the goals are to:  

• Develop information system frameworks that provide continuous and accurate 
representations of systems as they change over time. 

• Mirror various Earth science systems and use the combination of data analytics, AI,  
Digital Thread and state-of-the-art models to help predict the Earth’s response to  
various phenomena. 

• Provide the tools to conduct ‘what if’ investigations that can result in actionable predictions 
(Le Moigne and Smith, 2022). 

 

The ESDT program is similar to a digital twin focusing specifically on the oceans, DITTO. DITTO 
has a goal of establishing and advancing a high-performance computing digital framework to 
access, manipulate (e.g., using AI/ML), analyze, visualize, and effectively use marine data and 
model output. (Bahurel et al., 2023). Similar to ESDT, the DITTO platform will also enable users 
to address ‘what if’ questions based on shared data, models and knowledge. Both programs are 
slated to be expanded using a bottom up approach with smaller scale studies and prototypes to 
eventually be built into a larger scale effort over the next five to ten years. 
Conversely, the European Commission’s Destination Earth (DestinE) and NVIDIA’s Earth-2 are 
taking a top down approach to have a full digital replica of the Earth. DestinE plans to support 
tackling complex environmental challenges to:  

• Monitor and simulate the Earth’s system developments (land, marine, atmosphere, 
biosphere) and human interventions. 

• Anticipate environmental disasters and resultant socioeconomic crises to save lives and 
avoid large economic downturns. 

• Enable the development and testing of scenarios for ever more sustainable development. 
 

Earth-2 is an internally developed digital twin platform that permits coupling of state-of-the-art 
accelerated, AI-augmented, high-resolution climate and weather simulations together with 
powerful interactive visualizations. Both of these programs are being developed at a rapid pace 
planning for a fully integrated platform using AI/ML and GPU-accelerated processing. 
All of these digital twin efforts aligns with common goals to ingest large amounts of data to 
understand both large and small scale Earth processes for historical, current, and future 
environmental conditions. They also each intend to show how differing conditions can impact the 
Earth’s processes through simulations. Each digital twin model relies upon scalability and may use 
AI/ML for processing or applying algorithms and likely will need cloud infrastructure to support 
this massive endeavor. To reap the benefit of interoperability between all of these digital twins 
beyond common standard so they can share data and output with one another, we 
recommend workshops between the programs to plan in advance how they can interact 
(Recommendation 3.1). This is similar to Recommendation #5 in the Foundational Research Gaps 
and Future Directions for Digital Twins report stating that “Agencies should collaboratively and 
in a coordinated fashion provide cross-disciplinary workshops and venues to foster identification 
of those aspects of digital twin R&D that would benefit from a common approach and which 
specific research topics are shared.” (National Academies, 2024). This recommendation goes hand 
in hand with all ongoing programs adherence to the Findability, Accessibility, Interoperability, 
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and Reusability (FAIR) principles (Wilkinson et al., 2016; Brönner et al., 2023; Wearing et al., 
2024; Berkheimer, 2024). Communication during the development stage of these programs will 
be vital to constructing them in the most flexible way possible and can provide insight into other 
parts of the development processes where they may also align. 
5.3 FEDERATED SYSTEM OF DIGITAL TWINS 
For this study, we also wanted to look at how best to architect an operational digital twin system. 
Digital twin systems have been used for many different purposes including in the manufacturing, 
healthcare, spacecraft, and other disciplines (Soori et al., 2023; Sun et al., 2023; Pinello et al., 
2024). The Earth science use case includes combining multiple different Earth systems which are 
individually complex (Henrikson et al., 2022; Barros, 2024; Brocca et al., 2024). This leads us to 
recommend a federated system of digital twins rather than a one fits all to capture domain 
and process scale models (Recommendation 1.3). Domain scale digital twins would capture 
Earth system domains that the EO-DT already encapsulates while process scale digital twins could 
capture even finer grain processes that build the foundation of smaller scale processes derived from 
observations (Figure 5-3). For example, a domain scale digital twin of the ocean would encompass 
process scales of biogeochemical interactions, carbon sources and sinks, and impacts of SIC. Some 
of these smaller scale processes would overlap with other domain scale digital twins since SIC 
also impacts the cryosphere. Depending on the ideal granularity of the system, interconnected 
domain and process scale digital twins could interoperate to represent coupled systems and interact 
with each other. For the entire global system we do not recommend a single digital twin as the 
processes are too complex and the amount of processing needed is too large to realistically 
integrate all systems. Even if processing unlimited, the software complexity and difficulty of 
creating effective user interfaces for diverse digital twin use cases are barriers to a 
completely unified digital twin approach (Recommendation 1.3). 

 
Figure 5-3 Example Federated System of Digital Twins. Flow diagram includes global, 

domain, and process scale digital twins included with a foundation of observations. 
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A federated system of digital twins would require integration and interoperability. Broadly, it is 
difficult to design a system that would work for every use case or persona covering all Earth system 
domains. The main considerations would be transferring raw data and derived products from 
algorithm/model output between the digital twins at each level which would require the common 
data formats we mention in Section 5.1. This federated system would require data calls to be made 
both hierarchically and laterally (Figure 5-3). An example for a specific use case may be for a 
cryospheric scientist interested in how the Arctic will change during the summer. This persona 
requires knowledge about multiple different complex processes including surface mass balance, 
SIC change, shallow and deep ocean current interactions, albedo changes, etc. Each of these 
processes could represent their own digital twin, although some observations would be shared 
depending on how the processes are driven. Often processes will impact one another (e.g., albedo 
drives snow melt) so an output of one process digital twin may be the input to another. This is 
similar in the domain scale digital twins where impacts to the cryosphere will impact the ocean 
(e.g., outlet glaciers releasing meltwater may cool down temperatures significantly). 
We also recommend to use Observing System Simulation Experiments (OSSEs) to study how 
particular large or small scale processes could be integrated into a digital twin infrastructure 
(Recommendation 1.4). OSSEs are used to simulate and assess the impacts of new observing 
systems planned for the future or the impacts of adopting new techniques for exploiting data or for 
forecasting. (Boukabara et al., 2018) This is similar to the work already being done in the NASA 
ESDT program in which they are exploring analytic collaborative frameworks toward ESDT, AI 
and ML-based Surrogate Modeling for ESDT, ESDT Infrastructure, and ESDT Prototypes through 
the AIST-21 Solicitation Awards (Le Moigne, 2022). Each of these NASA-funded programs will 
provide guidance into exploiting data for subdomain processes and functionality. Most vitally, 
similar to this program, we recommend that any OSSE or explorative program brings back lessons 
learned to the larger community. 
6 RECOMMENDATIONS AND LESSONS LEARNED 
The goal of this BAA was to study an integrated Earth system replica of the Earth environment 
with multiscale, multi-variables features, and integrating a large set of observing systems and 
environment analyses systems. 
We highlight the goals of this program referenced from Section 1 and a high-level summary in 
Table 6-1. More in-depth recommendations which are tied to each goal by a reference number 
were mentioned earlier in the text are detailed into Table 6-2. 

Table 6-1 High-Level Overview of Recommendations. 
Goal  Quick Summary  

1. Provide NOAA with a 
functioning, scalable prototype 
that may serve as the foundation 
of next-generation ground 
enterprise system.  

While developing our prototype, our main challenges 
included handling non-standardized data and metadata, 
creating a user interface that represents all Earth domains 
well, and determining a stable way to integrate custom 
algorithms.  

2. Determine cost estimates for 
maintaining a digital twin and 
scaling it to store large amounts 
of data.  

Operational: $523/month—Continuous processing of 
hourly SST data (one geophysical variable). Development: 
$630/month—Processing a 2-week window of data from 
all domains for this prototype.  
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Goal  Quick Summary  
3. Provide recommendations for 

standardization and 
interoperability with other digital 
twins.  

Multiple efforts happening concurrently should be aligned 
to support architecture and data standardization decisions 
in the early stages which will provide easier 
interoperability and integration in the future.  

4. Study how a digital twin can 
benefit NOAA as an R&D 
product and an operational 
product.  

We recommend using a lighter weight implementation for 
developing and testing prototype software compared to 
building out a scalable operational product which impacts 
both architecture choices and costs.  

 

Table 6-2 Detailed Recommendations with References to Goals Provided in Section 1.2.2. 
Rec  Digital Twin Architecture and Costs  
1.1 Lesson Learned (1, 4): Certain architectural components of a digital twin are non-

negotiable and understanding inputs and outputs of each part of the system is vital to 
creating a successful platform. 
 

We found the necessary components of a digital twin to be: a data archive, a common data 
file formatter, a data input service, a service for containerized algorithm processing which 
outputs to a common processed file ands well as a tiled processed file (Figure 5-1).  
(Section 5.1)  

1.2 Recommendation (1, 4): We recommend using the static processing method for quick 
prototyping and R&D use cases and using the live processing method for processing data 
operationally using verified and highly tested pipelines. 
 

Our static data pipeline allows for more flexibility with users to control the amount and 
range of data being processed (e.g., historical events) versus wanting a near real-time 
operational pipeline with the live processing method. There is also flexibility in being able 
to pre- and post-process data more easily as able to do more piecewise development 
including running containers outside of the NOAA processing engine (Section 3.1.3). 
 

The live processing pipeline is mainly meant for scalability and integrated, tested algorithm 
implementation on cloud computing resources. (Figure 3-1 and Figure 3-2, Sections 3.1.1 
and 3.1.2) For operational use, AWS offers a dynamic compute resource service called 
Fargate. Instead of needing to allocate an EC2 beforehand, we could leverage Fargate in the 
future and have it determine the best compute resource to use for a given set of data which 
could also improve cost efficiency.  
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Rec  Digital Twin Architecture and Costs  
1.3 Lesson Learned (1, 3): For the entire global system we found using a single digital twin 

was too simplistic of a framework since processes are too complex and the amount of 
processing needed is too large to realistically integrate all systems. 
 

Recommendation (1, 3): The EO-DT should use a federated system of digital twins rather 
than a one fits all to capture domain and process scale models. 
 

Our EO-DT looked geophysical variables in different Earth domains that change on varying 
temporal scales from minutes to hours to days (Table 2-2). Each system domain includes a 
multitude of large and small scale subprocesses which are individually complex (Figure 
5-1). In addition, from conferences and literature we found many instances of smaller field 
and domain-specific digital twins which would be more easily integrated into a federated 
system rather than a complex single system (Section 5.2 and 5.3). A system of digital twins 
that feed into one another would provide a more comprehensive view of the whole Earth 
system. More specifically, we highly recommend space weather has its own digital twin 
due to issues with its native non-Earth-centric coordinate system (Section 3.1.4.5). 
Regardless of the challenge of processing and incoming massive amounts of data into one 
singular digital twin, the software complexity and difficulty of creating effective user 
interfaces for diverse digital twin use cases are barriers to a completely unified digital twin 
approach (Section 5.3).  

1.4 Recommendation (4): OSSEs can be used to study how particular large or small scale 
processes could be integrated into a digital twin infrastructure. (Section 5.3) 
 

In a complex system such as the Earth, there is an enormous amount of overlap in 
geophysical processes. To build a digital twin of the system, smaller scale simulation 
experiments should be used to determine how these processes of different Earth system 
domains can be integrated into this federated system of models. OSSE’s provide the  
ideal methodology to do small scale integration and provide a sandbox for testing  
prior to implementation.  
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Rec  Standardization, Data, and Formatting  
2.1 Recommendation (1, 3, 4): We would recommend either NOAA provide more data 

standardization for all data products, or provide a preprocessing step prior to digital twin 
ingestion through a data template. (Section 5.1) 
 

Each data type we ingested, either from satellite and ground observations or model 
output, in raster or point data, required an understanding of variables, formats, units, and 
metadata. This was a challenge when it came to platform flexibility. It will be necessary 
to either require users to conform to a common projection and data format or build in 
tools to dynamically standardize different incoming data types to ingest different types 
of observation, sensor, and model data for different use cases. In addition, making sure 
standardized variable names or having a map will be necessary (e.g., ‘lat’ = ‘latitude’, 
‘long’, ‘lon’ = ‘longitude’). An AI/ML technique like natural language processing may 
be useful in building something dynamic to understand user intent and incoming 
metadata in the future. 
 

This data standardization will also directly impact standard or custom AI/ML algorithms 
which are integrated into the platform. To seamlessly integrate custom use cases inputs 
and outputs must be in a standard format and data type which is expected by the 
algorithm. Even for more simple methodologies applied for data fusion and anomaly 
detection such as interpolation or subtraction data must be in a particular format to get a 
consistently correct output. If these are built into the platform as a standard algorithm, 
there may be a benefit to knowing how to pre-process rather than having to do a custom 
change each time for individual users fusion or anomaly algorithms. This general 
standardization would also benefit interoperability with other digital twins so data could 
be easily integrated.  

2.2 Recommendation (1, 3): We recommend using file formats that support flexible 
incorporation of arbitrary metadata (e.g., XML, OGC NetCDF, OpenUSD, and similar) 
to ensure complete data provenance continuity, to permit incorporation of RDF 
knowledge graph tags, and to provide visualization tools and user interfaces to exploit 
the use of metadata to improve performance and user experience. (Section 5.1)  

2.3 Recommendation (1, 3): We also recommend using RDF tags in observational 
databases to make the immense amount of data coming into NOAA’s system from 
satellites, ground-based observations, and model output easily usable and ingestible into 
a digital twin architecture. (Section 3.1.4 and Section 5.1)  
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Rec  Standardization, Data, and Formatting  
2.4 Lesson Learned (1): Integrating space weather data into the same digital twin 

framework that dealt with surface or tropospheric Earth system domains was extremely 
difficult due to the magnitude of scale difference and juxtaposing ideal reference 
coordinate systems. 
 

Recommendation (1): We recommend using the GSM coordinate system instead to best 
integrate space weather data such as solar wind magnetic shear. (Section 3.1.4.5) 
 

Space weather brought a unique set of challenges to our EO-DT program. Raw data was 
difficult to work with as it was not in a common coordinate projection and the solar wind 
magnetic shear product we demonstrated was a derived product from multiple sensors on 
DSCOVR. We had to adapt both our back- and frontend systems to work with a new 
data format and had to study how to best show off-Earth data when it was orders of 
magnitude farther away than our upper-tropospheric 3D temperature and moisture 
profiles. This brought a lot of discussion of if it would be better to have a separate digital 
twin for space weather data which could eventually be tracked at a high level in another 
global digital twin to study interconnected processes. (Recommendation 1.3)  

2.5 Recommendation (2, 4): The EO-DT AWS architecture should minimize utilization 
(cost) by implementing caching systems on NOAA networks and using on demand 
services as much as possible. (Section 4) 
 

During prototype development most AWS services were in an ‘always-on’ configuration 
to maximize availability for the team to integrate and test. An operational EO-DT could 
be made available on an as-needed basis, or at a minimum have scheduled data updates.  

2.6 Lesson Learned (1, 3, 4): Quantization can cause loss of data precision but is important 
and necessary for compression. 
 

Recommendation (1, 3, 4): We recommend taking a quantization or compression 
approach based on the precision and cost driven by the individual use case. (Section 5.1) 
 

In our prototype we quantized values in the USD and PNG files per time step, thereby 
dramatically reducing data storage and transmission requirements for visualization by 
end users, with commensurate reductions in data egress operational costs. The 
underlying observational data is quantized and the quantized numeric values directly 
reference a color map, with a default color scale encoded in the files on-disk and 
subsequently transmitted for viewing by Agatha. We note that any choice of a single 
quantization approach could potentially result in unacceptable loss of precision for  
some data, or for accuracy-sensitive uses not envisioned. Therefore, we recommend  
that aggressive quantization and compression techniques be used where and when 
possible, but that it will remain necessary for visualization software to also be able to 
perform its own color transfer functions on full-precision floating point data as well  
(i.e., sending the raw data information from the back end or from a cloud service that 
responds to full-precision quantitative data analysis queries, and not a quantized or  
loss-compressed output). 
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Rec Digital Twin Interoperability 
3.1 Recommendation (3): To reap the benefit of interoperability between digital twins we 

recommend coordination between these digital twin programs to adopt common 
standards for interoperability since the goals of each program align fairly directly. 
(Section 5.2) 
 

By connecting programs like EO-DT, ESDT, Earth-2, DITTO, and DestinE who have 
common goals of creating digital replicas and simulating future conditions, efforts can 
be combined to create better solutions and any duplicate work can be cut. Coordination 
between the programs will allow for accelerated development and creative problem 
solving by bringing together developers with different backgrounds. Even if there is not 
direct coordination in sharing development or algorithms, at a minimum standard data 
files and formats should be agreed upon from the outset so integration and 
interoperability will be a smooth transition in the future. 
 

This recommendation goes hand in hand with Recommendation #5 in the Foundational 
Research Gaps and Future Directions for Digital Twins report stating “Agencies should 
collaboratively and in a coordinated fashion provide cross-disciplinary workshops and 
venues to foster identification of those aspects of digital twin R&D that would benefit 
from a common approach and which specific research topics are shared.” (National 
Academies, 2024).  

3.2 Lesson Learned (1, 3): From interacting with scientists, software developers, students, 
and the general community at conferences and demonstrations we found there are a wide 
variety of users and use cases for the EO-DT. 
 

Recommendation (1, 3): Using an interactive, intuitive user platform is key to the 
adoption and long term use of a digital twin system by the community. 
(Section 3.9, Figure 3-15 and Figure 3-16). 
 

When demonstrating the EO-DT at conferences and talks in the community, we received 
quite a bit of feedback regarding features implemented in our prototype. During the 
program we tried to incorporate as many as possible within scope including custom 
features like dynamic color bar ranges and colormaps/gradients so users could look at 
data of interest for their individual use cases. Users can also import or create custom 
colormaps to fit their data and present it to others in their field. We also added in a 
feature where a user can copy and paste metadata to share it quickly and easily with 
others. Understanding users use cases across all fields who will use it will drive what 
other custom features will need to be implemented in the user interface. An example of 
this is that radiosonde data may be best viewed on a 2D skew-T plot rather than on a 3D 
globe as it is difficult to view. We found that the easier to use, the more users who will 
want to engage with the digital twin platform. Further, we found the higher the 
performance requirements, the more difficult it is for all users to access so we 
recommend looking at a web-based application in parallel with a high compute 
approach. Both solutions are important for different users and use cases.  
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