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1 Introduction 
NESDIS data holdings continue to grow beyond the economic, operational, and maintenance 
capacity of on-premises computing resources. Large data providers like NESDIS are 
increasingly turning to cloud computing resources, as demonstrated by the in-progress 
implementation of the NESDIS Common Cloud Framework (NCCF), which will migrate the 
operational ingest, archive, product generation, product distribution and access of their data 
products. While cloud computing solves problems of scaling data and access to an ever-
increasing pool of users, it is also an opportunity to explore how new techniques can monitor 
and improve data flows to users within the next-generation NESDIS ground system. Digital 
Twins are platforms that can be used to experiment and develop new systems that are 
operationally efficient and more user-friendly.  

A digital twin is a virtual representation of a physical system and is used throughout industry 
to monitor real-time processes, test experimental services, and support decision-making. 
This report details our development of a prototype digital twin to model core processes in 
the next-generation NESDIS ground system. We used our digital twin to test how innovations 
like machine learning (ML)-based anomaly detection and deep learning data fusion can 
provide better services to end users. Our prototype  Observing Digital Twin (EO-DT) also 
explored tools for user engagement that can support NESDIS management decision-making 
on next-generation ground systems. 

The purpose of building a prototype was to explore and demonstrate key features and 
recommend emerging technologies, estimate costs, and to study the value an EO-DT can 
provide to NESDIS. In Section 1, we provide an overview of digital twins, some anticipated 
benefits of our study goals, and the goals of the prototype EO-DT demonstrations that 
informed our recommendations. Sections 2-4 will deep dive into the tools, techniques, and 
scientific methods we used to develop our prototype and how our system can extend into an 
operational one1 (Section 5.1). We also document the state-of-the-science of other 
significant data providers’ efforts (Section 5.2), such as NASA, to build Earth System Digital 
Twins (ESDT). We also document the associated costs of the prototype and a proposed 
operational system1 (Section 5.3). A summary of our recommendations and lessons learned 
is found in Section 6. 

1.1 How Could a Digital Twin Benefit NOAA? 
As shown in Figure 1.1, measurements collected by Earth Observing satellites are processed 
through a complex pipeline consisting of downlinking, ingesting, archiving, processing, and 
finally disseminating the measurements and derived data products. We call this data 
pipeline the ground system. Some users, weather forecasters, and other disaster 
management professionals need these data in near real-time. The ground system’s 
objective is to ensure data is delivered rapidly and towards that objective must consider 
bandwidth limitations, efficiently execute millions of lines of code on high-performance 
computing platforms to get the job done. 

When the system is operating normally, the data is delivered to the end user on time. 
However, what if a satellite sensor malfunctions? Or if there is a bug in a piece of the code? 
What if we want to add a new satellite to the data stream? What if the production team 

                                                 
1 There is no planning for activity beyond the demonstration projects. See Disclaimer on page 4. 
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wants to experiment with a new technology? It can be challenging to troubleshoot problems 
or make changes to the existing ground system while delivering data to users. However, a 
virtualized equivalent environment such as a digital twin can enable rapid identification of 
problems and the implementation of solutions without disturbing the operational ground 
system. 

 
1.1.1 What is a Digital Twin? 
Many definitions of digital twins exist, but they share a common goal of representing a 
physical system virtually. A digital twin is a virtual representation of a system updated from 
real-time data and uses simulation and ML to help decision-making (IBM, n.d.). Historically, 
digital twins were employed in factory settings to mimic assemblies of products. However, 
digital twins can also replicate digital assets. This report defines a digital twin as a virtual 
model of the physical ground system that is augmented with real-time data from satellite 
sensors, computing resources, and user interaction. 

Digital twins are beneficial because they (1) mirror existing processes to support decision-
making and (2) enable research and design of systems and products without disrupting 
production. There is often confusion on the difference between digital twins and simulations. 
Both utilize models to replicate a system’s various processes; however, a digital twin is a 
virtual environment, which makes it considerably richer for study. While a simulation 
typically studies one process, a digital twin can run multiple simulations to simultaneously 
study multiple processes and their mutual interactions. For example, a climate model may 
focus on Earth dynamics but not socio-economic impact. A digital twin can incorporate both 
variables to answer “what if” scenarios about the human impact of climate change. 

1.1.2 What are the Benefits of Building a Digital Twin of the Ground System? 
NESDIS's product portfolio consists of petabytes of satellite data and continues to increase 
daily. Managers of such large data providers often want to know how to optimize and scale 
their resources. However, it is not easy to assess the impact of implementing technological 
advancements on the operational ground system, which must be available 24/7 to protect 
life and property. An EO-DT is a digital twin framework designed to validate technological 
advancements (e.g., ML) before changing the operational ground system. For example, with 

Figure 1.1 Simplified diagram of core 
processes in the NESDIS ground system. 
These are the core processes that need to 
be monitored and scaled to ensure timely 
data delivery to users. 

https://www.ibm.com/topics/what-is-a-digital-twin
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ML on the digital twin, it is possible to identify data demand patterns and dissemination 
bottlenecks, detect anomalies in satellite sensor data, and automate data quality control 
(Boukabara et al., 2019). In addition to optimizing the data flow, ML can facilitate data 
fusion for research and assimilation. ML thus has the potential to transform the current 
NESDIS data portfolio into a portfolio of analysis-ready data for highly efficient access by end 
users. 

An EO-DT can also use real-time data generated by the ground system to monitor the 
dataflow for anomalies, efficiently allocate system resources, and combine datasets. 
Interest in satellite data is expected to grow more than all NOAA data assets, and an EO-DT 
can ensure that the infrastructure keeps up with future user needs. Furthermore, the EO-DT 
could support NOAA management when studying the impacts of employing ML and new 
satellite sensors in operations. 

This report documents our efforts to build an EO-DT prototype to study the technologies 
needed, the associated costs, and the expected benefit to NOAA. Our prototype EO-DT has 
two roles, (1) to monitor and optimize the ground system delivery pipeline and (2) to serve 
as a development sandbox for enhancements without interrupting the existing system. 
Successful new technologies within the EO-DT can then be deployed into the ground system 
or integrated as an add-on using two-way communication channels. 

While there are many benefits, deploying a fully capable digital twin could be costly and 
resource-intensive. Since this is a new area of research at NOAA, some of the questions we 
sought to answer through our efforts are: 

• How much will it cost to develop a fully capable digital twin? 
• What are the best commercial and open-source tools to use? 
• Can ML improve the performance of some of the ground system components? 
• What data formats are optimal within the digital twin? 
• Can the digital twin improve data access to end users? 
• Can the digital twin meet or exceed the latency requirements? 
• How can the digital twin enable data fusion and ML? 

1.1.3 Study Goals 
For the EO-DT project, we built a simplified prototype that enables realistically estimate costs 
and a hands-on learning experience to identify strengths and weaknesses of new 
approaches and technologies. Our specific project goals were to: 

• Rapidly implement a prototype EO-DT of the current NESDIS ground system. 
• Build and use functional components that enable a study of the challenges of 

developing a fully functional EO-DT and producing realistic cost estimates. 
• Explore the strengths and limitations of using pre-built commercial systems to run the 

EO-DT. We will recommend which services can be commercially sourced and which 
should be custom-built. 

• Employ ML to demonstrate use cases where the EO-DT can be used to model future 
advancements in the NESDIS ground system. 

Our deliverables included (1) the technological assets used for the study, (2) bi-weekly 
progress meetings with the government, (3) kickoff, midterm, and final demonstration 
meetings, and (4) a final report with the results of the study. 
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1.1.4 Three Demonstrations to Inform Study 
We developed three technology demonstrations to inform this study and to show how 
significant components could be built. Each demonstration touched upon one of our primary 
study goals. 

1.1.4.1 Demo #1: Use real-time data to model current capabilities from satellite archives, 
computing resources, and user interaction. 

 
Key to the success of a ground system is its ability to process satellite data and deliver it 
rapidly and efficiently to the end-user in a manner that is most compatible with the user’s 
workflow. We modeled key components of the existing NESDIS user data delivery system to 
accomplish this goal. Users can query data holdings on NESDIS’s cloud services via a web 
portal. We built a user interface for searching and visualizing NESDIS data on the cloud 
using Amazon Web Services (AWS) (Figure 1.2). We incorporated a “Keep It Simple” 
philosophy on the user interface. While users may need complex features in a fully 
operational digital twin, we aimed to minimize clutter from the interface, a la the Google 
search interface. Google remains visually simple, a design element that continues to lead to 
its popularity. Advanced search features are possible in Google, but these are shown to 
users after the initial query.  

Presently, users can query the NESDIS archive using the NOAA Comprehensive Large Array-
data Stewardship System (CLASS) portal (Figure 1.3, top). The user provides a data product 
name, geolocation coordinates, and time. A link to an FTP download location is emailed to a 
user that could take even hours, depending on the volume of returned results.  

Our user interface reconciles differences in the existing data delivery systems with those 
anticipated in the NESDIS Common Cloud Framework (NCCF). More recently, the NOAA Open 
Data Dissemination (NODD) has opened public data access to cloud-based archives for JPSS 
and GOES data products. This newer access point does not have an official query portal, so 
we developed a user-interface with the querying capabilities of CLASS along with a capability 
to evaluate new services to users, such as data fusion. 

Figure 1.2  Screen capture of 
the landing page. We 
incorporated a “keep it 
simple” design approach to 
not overwhelm users. 



Science and Technology Corp. Nov 30, 2023 9 

A capability demonstrated in our system, which represents a potential enhancement to the 
ground system, is that all user requests are processed on-demand (Figure 1.3, bottom). On-
demand means that all backend cloud computing resources required to process the user 
request are launched only when the request arrives and are turned off after the necessary 
processing. In the past, data archive maintainers like NOAA often pre-process datasets to 
speed up data delivery. For example, the VIIRS Aerosol Optical Depth Level 2 data products 
are routinely gridded into a Level 3 data product. While such an approach may be 
appropriate when there is sufficient and continual demand for the products, it will be 
inefficient and incur needless costs for data with sporadic demands. 

Furthermore, pre-processing forces users to work with already defined gridding and 
aggregation schemes, which may meet the needs of most, but not all, end users. Users 
spend significant time performing data wrangling - transforming and organizing raw data into 
a suitable format for further analysis. On-demand processing would reduce the time users 
spend data wrangling by allowing users to build custom aggregation schemes. By processing 
on-demand, we also can collect data on which datasets a user wants to aggregate and how 
they wish to aggregate it and perform a cost-benefit analysis on whether it is more 
economical to add such a product to operations or only compute it on demand. For example, 
if users repeatedly request certain aggregated data sets, the system can store those data 
sets for even faster retrieval. 

A key feature of our approach is that we adopted a data-in-place philosophy to reduce cloud 
computing costs. We do not make any local copies of NODD data within our digital twin; 
instead, we monitor these resources from afar and ingest only the metadata of the datasets 

Figure 1.3 Existing user experience (top) allowed users to query and download data from the NESDIS 
archive. Users then spent significant time “wrangling” the data (combining, regridding, collocating) before 
they can analyze the results. In addition to simulate the existing capabilities, the EO-DT can evaluate new 
capabilities, such as exploring machine learning methods for data fusion, on demand cloud services, and 
novel anomaly detection schemes. These data are in an “analysis ready” format and the user can more 
quickly conduct research. 
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into our query database for cataloging and searching purposes. Minimally moving data 
around in, to, and from the cloud reduces costs and processing time. 

1.1.4.2 Demo #2: Explore where new services and ML can enhance the user experience and limit 
data wrangling 

In our EO-DT prototype, we demonstrated the use of ML for improved sensor anomaly 
detection. Currently, sensor data anomaly detection is based on quality flags. ML can 
classify images based on complex anomaly scenarios across an entire scene. The goal was 
not to remove the data from production but to better communicate to users and 
management if a dataset has significant degradation. Some examples are shown in Figure 
1.4.  

 
In ML, this task is fundamentally a binary image classification problem. We used Residual 
Network (ResNet)-18, a convolutional neural network (CNN) that is 18 layers deep, trained 
on the ImageNet database. We trained ResNet-18 on 2-3 years of GOES-series ABI and 
JPSS-series VIIRS L1b data from all channels. Offline validation showed that our model was 
99.2% accurate for ABI and 89% for VIIRS. We installed our most accurate GOES-16 model 
into operation and monitored every file for anomalies.  

Figure 1.5 shows the processing workflow for our ResNet-18 model. At run-time, the model 
loads pre-trained model weights developed using our 2-3 years of ABI data. The model is 
then provided with a real-time, unseen GOES image, and then it provides a classification, 
valid (anomaly-free) or invalid (contains anomalies). VIIRS data was used only for research 
purposes. More details on this project are provided in Section 3.1. We also display these ML 
anomalies on a dashboard to support decision-making for NOAA management (See Demo 
#3 and Section 2.5 Data Analytics Dashboard for more information). 

Figure 1.4 Examples of good quality GOES imagery (left) and imagery that has anomalies present 
(right). We demonstrated how we applied a convolutional neural networks (CNN) method to identify 
anomalies in imagery data from both GOES and VIIRS. Machine learning techniques can potentially 
identify complex anomaly patterns that may be missed by pixel-level quality flags alone.    
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We aimed to develop a proof-of-concept (Lavin and Renard, 2020) anomaly detection 
scheme and document the computing requirements and workflow unique to ML methods. 
Our complete development workflow is shown in Figure 1.6. A total of 4,550 randomly 
selected images from 2-3 years of GOES ABI data were downloaded from the NODD. One 
challenge of conducting ML research is the lack of pre-labeled training data. For that, we 
classified identifies images like those in Figure 1.4 as “valid” or “invalid” using the quality 
flags inside the file. The data needed to be reformatted from netCDF, the native file format 
of the ABI, to PNG format, which processes more quickly in the ML model. The images were 
converted to greyscale, downscaled from 5000x5000 pixels to 240x240 pixels, and 
randomized flipping across the horizontal and vertical axis to improve the accuracy of 
feature identification.  

 
During the training and validation phases, thousands of images were generated and 
required human inspection. Furthermore, it can be challenging to identify why a model like 
ResNet-18 chooses a particular image classification. To streamline the testing and 
validation process, we developed a Python-based GUI to improve the data inspection and to 
incorporate explainable ML to improve understanding (Figure 1.7). Like other CNNs, ResNet-
18 cannot explain “why” it classified an image as valid/invalid. Heatmaps provide "visual 
explanations" for decisions from CNN model families. Heatmaps determine the model 
attention mechanisms for each convolutional layer (e.g., ResNet-18 has 18 layers) using 
Gradient-weighted Class Activation Mapping (Grad-CAM). Attention allows a model to focus 

ResNet-18 
  

Figure 1.5 Simple overview of how 
ResNet-18 in operations. ResNet-18 
loads an existing pre-trained model 
and is provided with a real time 
images of ABI L1b imagery data (all 
channels). The ResNet-18 model 
then classifies the image as “valid” 
or “invalid” depending on if the 
scene is anomaly free or contains 
anomalies, respectively.  

Figure 1.6 The development workflow for the machine learning anomaly detection method tested in our 
demonstration. Training required labelling thousands of images and performing image transformations to 
improve the training model quality. Because machine learning models need to be easily updated to 
accommodate future changes to the data, our workflow heavily used automation and we developed a GUI 
tool to facilitate validation, which requires the data scientist to examine many images. The best model was 
then deployed onto AWS and operationally checks all new GOES ABI L1b data for anomalies. 
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on different parts of the input data, assigning varying degrees of importance or relevance to 
different elements. Our GUI displays where the ResNet-18 model focused attention on the 
GOES imagery using the final layer, the last layer focused before the ResNet-18 model 
assigned its classification. Given that numerous models were trained and tested, the GUI 
can easily swap with other models to compare and select the best model for anomaly 
detection. 

 
By developing our proof-of-concept anomaly detection system, we determined there are 
unique considerations for ML models that can be tested and optimized in the EO-DT. For 
example, large samples of labeled training datasets can improve anomaly detection 
accuracy. The work on our project is a promising start and, in the future, could lead to multi-
label classifications to rapidly prescreen data sets. We have also determined that NetCDF4 
and other NOAA archive formats are not well-suited for ML research, but data 
transformations to ML-friendly formats (like PNG) could be built into a digital twin. 

1.1.4.3 Demo #3: Support decision-making related to optimizing NESDIS data processing 
Digital twins can monitor processes in real time and generate a lot of valuable metrics. 
Converting this data into information is critical to answering what-if scenarios. An analytics 
dashboard can support decision-making by providing a one-stop location for real-time 
system monitoring for NOAA management. Examples of analytics include system 
performance metrics (e.g., accuracy and reliability) and the timeliness of different data 
fusion techniques. These metrics help monitor the data quality performance of the system 
regarding completing user requests and performing cost assessments for current and future 

Figure 1.7 Demo #2: ML-based data anomaly detection models 



Science and Technology Corp. Nov 30, 2023 13 

additions to the ground system. 

 
We built a dashboard (Figure 1.8) using Grafana for our demonstration. Grafana is an open-
source analytical and visualization tool that consists of multiple individual panels arranged 
in a customizable grid. Grafana could easily make a time series of system resource usage 
and data processing requirements, such as data product latency and the timeliness of the 
system’s response to user requests. Grafana can display statistics on user interaction, such 
as which NESDIS products were accessed, when, and over what region, alongside data 
fusion requests were made. 

Grafana interfaces seamlessly with AWS CloudWatch, a service that monitors AWS 
processes. On-demand, modular cloud resources are easier to monitor than complex on-
premises systems. Our dashboard supports custom scripting monitoring tasks, such as data 
processing time and user queries. In our prototype demonstration, we used Grafana Cloud, 
where Grafana hosts the portal. While this service was adequate for our demonstration, we 
recommend using Grafana hosted on AWS in an operational EO-DT2. 

1.2 Digital Twin Framework 
1.2.1 Concept of Operations 
Our three demonstrations show an interlinked system of processes. This section emphasizes 
the primary processes we simulated and describes how they interact. The NESDIS ground 
system's existing and planned “real” processes include the downlink, ingest, product 
generation, catalog and archive, search, and dissemination. We have also simulated new 
services within the digital twin, which we employ to investigate how an EO-DT can serve as 
an experimental platform for improving the ground system, especially those enhancements 
that leverage ML. Some example enhancements include ML-based anomaly monitoring 
(Section 3.1) and data fusion operations (Section 3.2). We chose these improvements 
because we prioritize the user experience at the core of our approach. It is important to note 
that the objective of our demonstration was not to achieve flawless replication of the ground 

                                                 
2 There is no planning for activity beyond the demonstration projects. See Disclaimer on page 4. 

Figure 1.8 Demo #3: Real-time analytics dashboard 
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system but, instead, to gather insights for our final report and study recommendations and 
to create proofs-of-concept for new services. 

Figure 1.9 shows the concept of operations of our EO-DT, both in terms of how we model 
existing capabilities (blue) and what new services we explored (red). The left-hand side 
shows the key ground system capabilities (the “real” system) and matches that in Figure 
1.1. The right-hand side shows how these processes and new services flow in our digital 
twin. Starting from  in the top right, data populates the NODD cloud archives, publicly 
available datasets on commercial platforms such as AWS. We utilize the NODD because (i) 
the data is already in the cloud and thus provides easy and secure connections to our cloud-
based EO-DT and (ii) it is more representative of the future NESDIS archive that will be 
available after the NCCF has been fully implemented. When a new file is available on the 
NODD, the EO-DT is notified and retrieves essential metadata about the file , such as the 
product name, satellite source, start and end times, computes geolocation, and stores all 
these metadata in the enhanced digital twin catalog database (Sections 2.3.1--2.3.2). The 
satellite data remains on the NODD and is not duplicated within the digital twin. In , each 
new GOES-18 L1b full disc file (all channels) is monitored for anomalies using a ML 
approach that we describe in detail in Section 3.1. While we only monitored GOES-18 files 
operationally, our methodology was tested with VIIRS L1b datasets with promising results. 
As described, anomaly detection is an example of a new service that has the potential to 
classify complex anomaly patterns to better communicate data quality to both end users 
and NOAA management.  

 
In CLASS, the current operational user interface for data searches allows users to search 
and retrieve (order) data based on the product name, date, time, and location from the NCEI 
archive. After completing the search, CLASS provides a link to end users to visualize their 
ordered data. However, CLASS currently lacks the capability for direct data visualization.  

Figure 1.9 The concept of operations for the STC EO-DT prototype. The STC EO-DT models key 
ground system processes and provides a sandbox to explore new features, such as ML-based 
anomaly monitoring, to explore user experience what if scenarios. Improving the user experience 
was central to our approach.  
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In the digital twin, we developed a cloud-based portal that serves as a front-end to order 
NODD data . The portal also integrates a planimetric (plan) view capability to display the 
ordered datasets, offering users a rasterized visual on an open-source global map (Section 
2.3.4). 

Working with NOAA project management, we identified data fusion as a critical service to 
test in the digital twin. Within our EO-DT prototype, we developed a data fusion scheme  to 
perform common transformations to align dissimilar data. Data from the same NOAA 
satellite sensor can have varying resolutions, gridding, and temporal sampling. We 
developed cloud-friendly code that can be deployed to perform these transformations rapidly 
as shown in our demonstration (Section 2.4).  

We developed a proof-of-concept for two ML-based data fusion enhancements (Section 3.2) 
that can augment our “classical” regridding approach. The two enhancements address the 
significant challenges of combining satellite datasets with other products, models, and in-
situ observations, such as (i) the presence of a significant number of missing values in 
satellite scenes due to atmospheric clouds and (ii) too coarse of a spatial resolution of 
satellite data products to be fully exploited for their target application. Atmospheric clouds 
can obscure the Earth’s surface from satellite visible, infrared, and some microwave 
sensors, thereby affecting their derived products. To overcome this, we explored gap filling 
clouds using Long Short-Term Memory (LSTM), a recurrent neural network (RNN) 
architecture used in Deep Learning. We also explored using Enhanced Super-Resolution 
Generative Adversarial Networks (ESRGAN), a model that can be trained to leverage LEO 
and GEO observations to produce a high-resolution image when only low-resolution data is 
available. Both ML techniques showed promise in overcoming these challenges. 

Installing new algorithms into the ground system is a critical component of the NCCF. In our 
prototype, we demonstrated how an ML-based algorithm could be containerized and 
installed . To do this, we installed a version of the multi-instrument inversion and data 
assimilation preprocessing system, artificial intelligence version (MIIDAPS-AI) algorithm. 
MIIDAPS-AI estimates vertical profiles of temperature and moisture, surface temperature, 
surface emissivity, and cloud parameters from multiple instruments (Maddy and Boukabara, 
2021). MIIDAPS-AI is not presently an operational NESDIS product, but given that there are 
many ML-based retrievals in development and the future, it is an important example to 
study. The NCCF must be able to accommodate the different development and operational 
needs, such as improved automation for deploying training models that are routinely 
updated. 

Each of the steps described above produces a wealth of actionable real-time data. For 
example, user request processing times, products of interest, and computing resource 
usage. We developed a visualization system for all these analytics  using a web-based 
dashboard. This feature distinguishes a digital twin from a traditional simulation: we 
simulate many elements of the whole system and capture data in real-time to support 
decision-making. 

All the above enhancements were made to demonstrate a user-centered design that 
focuses on the simplicity of the user interface to get data of interest as quickly as possible. 
While the existing ground system provides invaluable services to the end user, our prototype 
explored how new services can be added. Furthermore, we explored ways to improve 
support and benefit for the NOAA management user responsible for the ever-increasing 
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number of satellites, data products, and data volume. The on-demand resources and 'data 
in place' approach can reduce operational cloud costs substantially without compromising 
performance scalability to meet increasing user demands. 

Finally, we are looking to a future that consists of a federation of digital twins. Through 
correspondence with other digital twin efforts at NASA and Destination Earth (DestinE), the 
community has a vision of an interconnected set of modular digital twins. Much work and 
discussion are centered around interoperability, or how to work together, share data, and 
exchange actionable information seamlessly. We describe our interactions with the 
community in Section 5.2 and our recommendations for harmonizing efforts. 

1.2.2 Ground System Components Modeled in the Digital Twin 
1.2.2.1 Downlink and Ingest 
In the ground system, data are staged upon receipt to ground stations in Svalbard, Norway 
McMurdo Antarctica, and Suitland, MD. Our EO-DT modeled the behavior and properties of 
the existing downlink system using CrIS and ATMS Level 1 assets by monitoring the satellite 
sensor performance, such as coverage, quality assurance, and latency, using a Grafana 
dashboard (Figure 1.10). We tracked these statistics to monitor for bottlenecks and 
anomalies in real-time in the dashboard. This one-stop location makes it easier for a 
resource manager to respond to problems. For example, Figure 1.10 a and b show the mean 
and time series of latency of CrIS and ATMS products generated on the NODD on 
09/27/2023 18-21 UTC. Access to the NOAA operational system requires strict security, so 
we used the NODD, which is public, as a proxy for internal NOAA operations. NESDIS EO-DT 
project management requested that the EO-DT have a two-week data window to simulate 
the real-time data flow to monitor coverage, latency, and data quality flags for all products. 
We exceeded this requirement using our data-in-place approach (See Section 1.1.4). 
Because we were only storing metadata, the database requires little storage (< 1GB), so we 
could retain a complete data record from June 2023 through November 2023, when the 
project was completed.  

As shown in Figure 1.9 , one enhancement we explored is using ML techniques to detect 
anomalies in imagery data from the GOES-16/-17/-18 ABI and NOAA-20 VIIRS L1b products. 
Figure 1.11a shows the Grafana state timeline of GOES-18 Channel 16 from 09/27/2023 
18-21 UTC. State timelines are helpful to visualize whether the data are classified as valid 
(anomaly-free) or invalid (contains anomalies) using our ResNet-18 model (Section 1.1.4.2 
and Section 3.1). As described in Section 3.1, our system classifies each new GOES-18 
image from the NODD, and the dashboard displays the classification. At 20:10 UTC, an 
anomaly was detected by the model. Upon inspecting the imagery (Figure 1.11b), a small 
part of the south pole region was missing from the full disk image (circled) at 20:10 UTC 
while the other images were fully filled in. While quality flags are invaluable to determining 
whether data meets requirements, ML techniques can determine problematic data patterns. 
In our demonstration, we used a binary classification where valid or invalid were the two 
states. By building on this work, it is possible to train a multi-label classification model to not 
only find invalid images but also to predict what kind of anomaly patterns are within the 
image. 
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Figure 1.10 The Grafana dashboard showing the real-time latency and quality information for Suomi 
NPP, NOAA-20/-21 CrIS and ATMS on the NODD at 09/27/2023 18-21 UTC. (a) The mean hourly latency 
in minutes for the full record (b) the mean hourly latency time series. Latency is calculated from the end 
time and the file creation time to approximate the data processing time. (c) The data quality, which 
displays valid when >80% of quality flags are “good” and invalid otherwise. CrIS SNPP shows invalid 
because of ongoing sensor malfunctions. (d) The “good” quality flag percent time series in percent. The 
values for each product range from 0 to 100% and are stacked so all variables are visible on the graph.  

Figure 1.11 (a) Grafana state timeline display showing the quality status of GOES-18 data using machine 
learning image classification. At 20:10 UTC an anomaly was detected, and a visual inspection shows there 
was a small data outage in Antarctica (circles). Other images were complete. The example shown is for 
GOES-18 ABI channel 16 at 09/27/2023 18-21 UTC. Imagery Source: CIRA SLIDER. 
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1.2.2.2 Processing 
In our EO-DT, processing encompasses Level 1 and Level 2 product generation and related 
services. We worked with the NESDIS EO-DT project management team to run a version of 
MIIDAPS-AI (Maddy and Boukabara, 2021) to simulate how our EO-DT could run and monitor 
retrieval algorithms. MIIDAPS-AI uses ATMS and GFS as inputs to predict profiles of 
temperature, relative humidity, total precipitable water, and cloud liquid water. Figure 1.12 
shows a single granule processed by MIIDAPS-AI, which has a total processing time of 246s, 
of which the ML model prediction only took 3 seconds to run on our system (Section 5.3.1 
describes the compute environments used).  

 
An important enhancement in our EO-DT was data fusion using classical (Section 2.4) and 
ML (Section 3.2) combination techniques. Data fusion encompasses several 
transformations, such as spatio-temporal gridding, gap filling, quality control, and trend 
analysis. In our demonstration, we employed a classical regridding scheme to validate our 
cloud architecture and tested ML methods offline. In the future, more complex fusion 
schemes can be employed using the same system and on-demand file format conversions. 
Our data fusion had a processing time requirement, so that it was within 10 minutes of a 
global day. Typical regridding processing times for each granule were typically around 30-60 
seconds using a single core but can be scaled using multithreading and container 
orchestration to ensure the time requirements are met for a complete global day. We 
installed several Python scripts to monitor the data fusion processing time and displayed 
them on the dashboard (Figure 1.13). Some essential statistics are CPU usage, memory 
usage (MB), and processing time (minutes). By monitoring the data fusion performance, 

Figure 1.12 Relative Humidity at 850 hPA from MIIDAPS-AI on Sept 7, 2023 00:00 UTC. The ATMS 
granule was processed on-demand on the EO-DT. 
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system administrators can decide how to allocate cloud resources best to achieve user 
requirements and accurately estimate their cost. 

 
1.2.2.3 Catalog and Archive 
After data products are generated, they are cataloged and archived on NOAA data archives, 
such as those maintained by NCEI. Nearly all operational Level 1 and Level 2 products are 
archived on CLASS. Some Level 3+ datasets are archived on CLASS but generally must have 
strong stakeholder justification. Users who access the data via CLASS can search it because 
data are cataloged in the archive based on their metadata. Metadata parameters enable 
fast searching, so the system does not have to open each file and examine its contents. This 
is especially important in determining the location of a granule. 

In our EO-DT, we developed a catalog system that did not require opening individual files, 
thus eliminating readers all together. For NESDIS LEO datasets, file names commonly 
contain information such as the satellite, sensor, product, and start and end times. 
However, associating location information often requires the system to open and find the 
geolocation data elements, which adds cost and complexity to maintain because each data 
product's content structures are unique and need a custom reader to parse. Instead of 
determining geolocation from within the file, we used the two-line element (TLE) and the file 
start and end times to determine the approximate location. Instead of using latitude and 
longitude coordinates, we used a geohash to identify the location, which is faster to query in 
a database (Section 2.3.4). 

Figure 1.13 The dashboard output of cloud computing resource usage to perform data fusion on 
09/27/2023 18-21 UTC. (a) shows the mean CPU percentage for each user request, (b) shows the total 
memory usage (MB), and (c) shows the processing time (mins). Monitoring resources in real-time allows 
management to perform a cost-benefit analysis of using on-demand services or pre-processing the data. 
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While not part of the demonstration, we studied some emerging data formats and compared 
them with netCDF4 which is one of the most prevalent formats at NOAA (Section 4.2). Self-
describing data formats like netCDF4 offer excellent compression and are considered a 
standard in the Earth Sciences. While excellent for archiving, netCDF4 files are not cloud-
optimized, unlike Zarr, an emerging format that is cloud-optimized. Cloud-optimized formats 
enable users to access parts of the data file without downloading the full file. Other popular 
cloud-optimized formats include Avro, Parquet, and ORC, but those are more suitable for 
time or other point-based data and less suitable for geospatial data. While netCD4 is not 
optimized for the cloud, tools are emerging that will allow users to load only parts of the 
netCDF file with a slight performance penalty. Since converting the entire archive to a new 
format can be prohibitive, we recommend integrating processing tools with the current 
netCDF4-based archive. 

Figure 1.14 The dashboard output of the catalog and archive on 09/27/2023 18-21 UTC.  The top two 
panels are a timeseries of number of new (a) GOES-derived dataset and (b) LEO datasets that appear on 
the NODD. (c) shows a time series of the new data being cataloged and a count of on-demand computing 
resources that are invoked. 
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1.2.2.4 Search and Dissemination 
Presently, users query NESDIS data by visiting www.class.noaa.gov. Users can search by 
time and geographic location for data on a geospatial map. A list of available files is 
returned, and the user places their order. Once the data are processed, which can take 
anywhere from a few minutes to days, an FTP link is sent to the end user for them to 
download. In the EO-DT, we developed a web portal (Figure 1.15) that allows users to query 
select data products on GOES and JPSS NODD archives, which is available as drop down 
menu items in (a). Like CLASS, users can subset their data by (b) time and (c) location and 
the interface returns a list of matching products (d). Since the data are already staged on 
the cloud, users are not delayed downloading the files. We added two additional features 
not available on CLASS: the ability to visualize the data in its native grid as a ‘quick look’ or 
(e) to regrid the data to a regular grid (f). 

 
After the user hits submit, a new tab opens in their browser, and the data are overlaid on a 
map. Figure 1.16 compares SST in the quick look and the regridded (1 km) view. For the 
prototype, the quick look displays only the first file in the list, but it could be improved to 
allow the user to choose a file of interest. The regridded data combines both files, and a 
future feature could allow users to select their desired spatiotemporal averaging. The data 
are irregularly spaced in the quick view shown in Figure 1.16 because they occur on the ABI 
fixed grid. The regridded visualization places everything on a common, evenly spaced 
1.0˚x1.0˚ grid. 

 

Figure 1.15 Web portal that has the user interface to search the NODD. Users can query the archive by (a) 
data product and satellite, (b) date and time, (c) geolocation bounding box. After clicking “search” in the 
lower left, the portal returns a list of filenames (d) that match the query. The user can then visualize the 
data in its (e) native grid using “quick look” or (f) regrid the data to a regular grid of their choice. 
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Like the other ground system components, the dashboard monitors real-time user 
interaction with the portal. Recall that user requests are all performed on-demand, so Figure 
1.17a shows the number of on-demand invocations of the system when the user searched 
the catalog (orange) and requested a visualization (green). Each time the user clicks the 
search button, the catalog count will increase, and each time the user selects submit, the 
map count will increase. In addition to computing resources, we can see what products 
interest the users and where. b shows a heatmap of regions that users searched, where the 
redder the region, the more interest. c shows which data products were searched and how 
many times. Finally, d shows the regridding resolution that was requested. 

 

Figure 1.17 The dashboard 
showing analytics of how 
users interacted with the 
user interface. (a) shows the 
number of on-demand 
invocations of the system 
when the user searched the 
catalog (green) and 
requested a visualization 
(orange). (b) shows a 
heatmap of regions that 
users searched (c) shows 
the most popular data 
products and (d) shows 
what regridding scheme 
was requested, 

Figure 1.16 A comparison of a visualization user interface of the GOES-16 Sea Surface Temperature product of a 
single granule in (a) single-file quick look and (b) regridded two-hour average on Oct 24, 2023 18-19 UTC. Inland pixels 
are due to lakes or large rivers. 
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1.3 Summary 
In this section, we provided a high-level overview of the EO-DT and how we designed our 
system to achieve our goals, which were to (i) use real-time data to model current 
capabilities from satellite archives, computing resources, and user interaction, (ii) explore 
where new services and ML can enhance the user experience and limit data wrangling; and 
(iii) support decision making related to optimizing NESDIS data processing. We performed a 
live demonstration for NESDIS and stakeholders, and this report provides specific project 
details, technologies used, and lessons learned through the process. The remainder of the 
report contains a detailed description of our work so that others can use our approach and 
benefit from the lessons we learned about building a prototype digital twin. 
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2  Concept of Operations and Computing 
Infrastructure 

2.1 Digital Twin Architecture 
Speed, safety, and scalability contribute to the rise in popularity of cloud technologies (Arora, 
2019). Our EO-DT architecture supports a user interface that simulates existing capabilities 
on NOAA CLASS and explores new features. The user interface was designed to support a 
limited number of simultaneous users but can leverage the underlying cloud platform for a 
fully operational EO-DT3. Our multi-tier (front, middle, and server-side) architecture leverages 
AWS serverless resources where possible and is designed to be flexible, maintainable, and 
scalable. 

We evaluated a variety of AWS services during our exploration and determined the following 
set to be ideally suited for implementing the EO-DT. EC2, or Elastic Compute Cloud, allows 
users to run virtual servers in the cloud, offering scalable computing capacity. Lambda is a 
serverless function that runs code that responds to events and automatically scales based 
on demand. DynamoDB is a managed NoSQL database service that provides fast and 
predictable performance with seamless scalability. S3, or Simple Storage Service, provides 
object storage through a web interface and is designed for online backup and archiving of 
data and applications. API Gateway is a fully managed service that makes it easy for 
developers to create, publish, maintain, monitor, and secure APIs at any scale. CloudFront is 
a content delivery network (CDN) that distributes content globally with low latency and high 
transfer speeds. Simple Notification Service (SNS) distributes notifications to subscribers 
using a publish-subscribe model. Simple Queue Service (SQS) provides a message queue 
service to store SNS messages awaiting processing by other resources. Lastly, CloudWatch 
collects and tracks metrics, set alarms, check logs, and explore changes to cloud resources. 

Figure 2.1 shows a diagram of the cloud architecture of our prototype EO-DT. We used 
CloudFront for content delivery and cashing, EC2 instances for computing, S3 for storage, 
DynamoDB as a database, Lambda for serverless functions, API gateway for networking, and 
SNS/SQS for messaging and notification. We also used a managed Grafana Cloud 
dashboard to view system-generated metrics. Below, we describe the computing processes 
and the data flows.  

Two core processes are persistent. First, a process that include cataloging new data from 
the NOAA NODD into our DynamoDB to create a searchable database of available data for 
end users. In this process, new data triggers a Lambda function that creates and writes 
metadata to the DynamoDB. Second, a process that monitors new Level 1 ABI data for 
anomalies as the NODD receives new data. These processes are monitored using 
CloudWatch, and the anomaly detection output is written to an S3 for display in the Grafana 
dashboard.  

                                                 
3 There is no planning for activity beyond the demonstration projects. See Disclaimer on page 4. 
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In parallel, the system has several on-demand processes: user data queries, data fusion, 
and visualization. The user can access the user interface via a static website delivered by 
CloudFront and a public S3 bucket. Their search request is delivered using the API gateway, 
which triggers a Lambda to search the DynamoDB and return the files that match the user's 
search parameters. Users can select “quick look” or “gridded” as their visualization option. 
Performing a “quick look” visualizes a file in its native, irregular grid. Their request is 
processed through the API gateway, which triggers another Lambda that opens the user’s 
requested file, extracts a data variable, and saves it to a map in a vectorized format. If the 
user selects “gridded,” the request is again processed through the API gateway, which is 
now routed through an EC2 to perform a grid conversion from the data’s irregular grid to a 
regular grid of the user’s choosing. The regridded file is saved to an S3, triggering the map 
Lambda, which extracts a data variable and saves it to a map in a vectorized format. 

The system has three core data flows: the catalog data, the user request, and the output file. 
Metadata from the NODD is parsed by Lambda and stored in the DynamoDB to create the 

Figure 2.1 Cloud architecture of our prototype EO-DT. There are three main data flows: (1) the 
metadata from the NODD (JPSS/GOES Open Data) that is stored in a database (DynamoDB); (2) 
the user request data, which passes into the API gateway, triggering a database search and which 
returns matching results. The user then can request a visualization type and (3) the resulting 
output file, which the user can visualize as a map. If the user selects ‘data fusion,’ the data are 
processed on an EC2 before being saved to an S3 bucket; if the user selects quick look, the data is 
imported directly from the NODD. A lambda imports the data and creates an HTML map, which is 
delivered as a new tab in the user browser using CloudFront and public S3. 
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catalog data, which the user can search. The user request data consists of data search 
parameters and a map visualization option. Their search request passes into the API 
gateway, triggers Lambda to search the database, and returns the matching files. The user 
performs a second request to select a visualization type. Their second request determines 
how the data will flow through the system. If the user selects ‘data fusion,’ the data are 
processed on an EC2 before being saved to an S3 bucket. If the user selects ‘quick look,’ 
the data is imported directly from the NODD. A Lambda retrieves the data and creates an 
HTML map, delivered in a new tab in the users’ browser using CloudFront and public S3. 

There are also two smaller data flows, the first being the time series of the anomaly 
detection system and the second is the system analytics data. Both data flows are routed 
into Grafana. The anomaly detection system creates a JSON file with a time series of every 
GOES-18 L1b channel and whether the image contains an anomaly (‘invalid’) or not (‘valid). 
A second data flow involves system analytics, which consists of several smaller data 
streams. We utilize CloudWatch to fully monitor the health of the cloud resources and 
access logs to check for errors. We also developed several custom Python scripts to monitor 
user request statistics. Grafana is a one-stop interface for NESDIS management users to 
access data quality, system performance, and user engagement with the EO-DT. 

Where possible, we leveraged cloud scalability in our design. Managed services, like 
Lambda and DynamoDB, automatically scale and can handle thousands of simultaneous 
calls. S3 storage is essentially unlimited and expands as the data holdings grow. The EC2 
production environment is not scalable in our prototype design. However, with 
containerization and clustering, the resources could auto-scale to accommodate more 
simultaneous users. 

During the project, we also evaluated several services that we did not ultimately decide to 
deploy in the EO-DT. For instance, we explored using TwinMaker, Amazon’s new digital twin 
service that provides a framework to integrate data streams from IoT sensors. An appealing 
characteristic of TwinMaker was that it fully managed the messaging and data flow within 
the system, and we could expand to accommodate new sensors and datasets and remove 
components if features were retired. However, upon testing, TwinMaker did not easily ingest 
NESDIS data sources, which included satellite sensor data, retrieval products, dataset 
production data, and user inputs. Instead, we found that a combination of SNS/SQS and 
Lambda functions carried out many of the same functions as TwinMaker and were able to 
leverage Python packages that can read geospatial data formats. 

We also considered using containers and resources such as AWS Fargate, a serverless 
compute engine for containers that work with Amazon Elastic Container Service (ECS) and 
Amazon Elastic Kubernetes Service (EKS). Fargate would have allowed us to deploy 
containerized applications without managing the EC2 instances. We ultimately decided 
using EC2 with Python virtual environments was sufficient for the demonstration. However, if 
one is built, we recommend Fargate or another container orchestration approach for an 
operational EO-DT. 

Overall, flexibility, maintainability, and scalability are the key strengths of our architecture. 
Our system was tested when the JPSS part of the NODD underwent reorganization, and our 
data paths no longer pointed to the files needed to populate the catalog - as seen in 
reduced data flow into our catalog database. Fortunately, our SNS filters are easy to update. 
The system remained online through this episode, albeit with a short data outage for some 
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products. Some future improvements of the EO-DT would include incorporating 
containerization, adding security measures, and load balancing so the system can handle 
more simultaneous users. 

2.2 Data Products  

For our study, we used twelve data products from NESDIS’ portfolio (Table 2.1) representing 
the five earth domains: ocean, atmosphere, land, cryosphere, and space weather. These 
products have all undergone maturity review, are deemed mission critical, and have an 
active user base. These datasets are derived from a blend of geostationary and polar 
orbiting sensors and span processing levels one to three. These datasets are also helpful for 
monitoring long-term trends and represent diverse spatial resolutions and latencies. All 
these datasets are also available on AWS S3 buckets as part of the Amazon Sustainability 
Data Initiative and the NOAA Open Data Dissemination Program, which the prototype system 
can fetch. There are other data pathways, such as using NOAA CLASS subscriptions. We 
chose to use the Cloud because it represents the future state of NOAA data holdings as part 
of the NESDIS Common Cloud Framework (NCCF).  

Table 2.1 Datasets used in the EO-DT prototype. 

Product Name Platform Level Resolution Latency Earth System 

VIIRS SDR NOAA-20 1 15 km 90 min All 

ATMS TDR NOAA-20 1 15 km 90 min All 

CrIS SDR NOAA-20 1 15 km 90 min All 

ABI GOES-16 1 0.5-2 km 5 min All 

Sea Surface Temperature GOES-16 2 2 km 1 hour Ocean 

Sea Ice Concentration and Temperature NOAA-20 2 15 km 90 min Cryosphere 

Active Fire GOES-16 2 2 km 90 min Land 

Aerosol Optical Depth (AOD) NOAA-20 2 2 km 103 min Atmosphere 

NUCAPS temperature profiles NOAA-20 2 50 km 90 min Atmosphere 

SUVI L1b Data Products GOES-16 1 2.5 arcsec 5 min Space Weather 

GFS - - 27 km 6 hours Atmosphere 

We incorporated subsets of the above data in different parts of our prototype EO-DT. We 
chose to display Sea Surface Temperature, Sea Ice Concentration and Temperature, Active 
Fire, Aerosol Optical Depth (AOD), and NUCAPS in the user interface. We used Level 1 
imagery, such as VIIRS and ABI, in our anomaly detection system. The ATMS TDR and GFS 
were ingested in the MIIDAPS-AI algorithm. Even if not explicitly used in a demonstration, all 
the above data were included in our catalog.  

Working with different data is challenging because they each require unique readers. The 
DEEVA team at STAR collaborated with us and provided several data readers. Their code 
was beneficial for reading ATMS and CrIS, which are challenging due to separate data and 
geolocation files. We used Python packages such as xarray to simplify opening, reading, and 
working with Level 2+ data. The GOES products are operationally produced on a fixed grid, 
which must be converted to latitude and longitude coordinates before regridding and 
mapping. We internally generated several geolocation files that we reused when working 
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with the GOES-16 data so that we did not repeatedly have to perform the conversion, thus 
saving computing time. 

2.3 Serverless Resources 
2.3.1 Cataloging 
Data users need to be able to query data holdings quickly. The GOES and JPSS S3 buckets 
are organized by product time but lack native search capabilities. This limitation implies that 
users create their own tools to search the archive. To address this, we created a metadata-
based catalog that allows users to query the cloud archive.  

One widely recognized method of cataloging is the Spatio-temporal Asset Catalog (STAC). 
STAC is a standardized model designed primarily for geospatially focused catalogs and is 
compatible with databases like MongoDB, and DynamoDB, as they all support JSON 
formatted catalog entries. 

We took a pure DynamoDB approach in our prototype for several reasons. First, DynamoDB 
is a managed service and easy to deploy. The setup process did not require expertise in 
database languages like SQL. Additionally, we did not need complex querying in our 
demonstration. Thus, DynamoDB's straight forward and efficient native querying capabilities 
met our needs. DynamoDB has not been as extensively examined for remote sensing and 
geo data applications, and we wanted to experiment with this new approach. If needed, 
DynamoDB could be replaced with a relational database in an operational EO-DT (if built). 
While not strictly a STAC catalog, the DynamoDB entries are structured similarly to STAC. For 
example, users can efficiently query and retrieve geospatial data based on specific 
parameters such as time, geolocation, product, asset location, and other relevant metadata. 

In DynamoDB, each row represents a single file on the NODD. Table 2.2 shows some 
example entries in our DynamoDB. For simplicity, we show only five fields: Obkey, 
satellite, geo5, product, and starttime. The DynamoDB is indexed based on a 
partition key and a sort key. The DynamoDB needs to have a unique partition and sort keys 
for the search to work effectively. However, most of our fields are not unique. The satellite 
field is not unique because many products are generated from sensors on NOAA-20 and 
GOES-16. The same limitations are true for the products field. Start times may be shared for 
multiple products from the same satellite. We will discuss geohash (geo5) in Section 2.3.4, 
but like the latitude and longitude coordinates it represents, geohash is not unique. The only 
unique field is obkey, the address on the S3 bucket for the product file. 

Table 2.2 Example entries from our DynamoDB. The asterisk (*) indicates the partition key. 

obkey* satellite geo5 product starttime 

NOAA20/SOUNDINGS/NOAA20_NUCAPS-
EDR/2023/07/24/NUCAPS-
EDR_v3r0_j01_s202307240130559_e2023
07240131257_c202307240338040.nc NOAA20 z8zep NUCAPS 2023-07-24T01:30:00 

NOAA20/SOUNDINGS/NOAA20_NUCAPS-
EDR/2023/08/31/NUCAPS-
EDR_v3r0_j01_s202308311848239_e2023
08311848537_c202308312000210.nc NOAA20 qnyh6 NUCAPS 2023-08-31T18:48:00 

NOAA20/VIIRS/NOAA20_VIIRS_Aerosol_Optic
al_Depth_EDR/2023/09/19/JRR- NOAA20 7s0ns AOD 2023-09-19T15:09:00 
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The fastest searches will query based on the partition and sort keys; querying the other 
fields is significantly slower. We needed users to be able to search the table based on 
multiple parameters: time, location, and product. A solution is to create Global Secondary 
Indexes (GSI), which copies the main table with different partition combinations and sort 
keys (Figure 2.2; AWS. (n.d.)). GSI makes a copy of the main table, once for each different 
sort key. In our example table above, we would have one main table (obkey x product) and 
three GSI tables, obkey x satellite, obkey x geo5, and obkey x starttime. The results 
are then combined using an inner join on the obkey, so only the data with the same obkey 
in all four tables is returned.  

  
There are some drawbacks to this approach. Copying the table means your costs will 
increase for each GSI. Secondly, since each table is searched, the number of tables read 
capacity units also increases because you are now reading from multiple tables instead of 
one. 

We met with the AWS NOAA account team and validated our approach. Toward the end of 
the project, we showed our approach to a DynamoDB subject matter expert who proposed 
an alternative, faster, and more cost-effective approach using Z-Order Indexing (Slayton, 
2017). This approach would require us to create a new column with a unique value by 
combining multiple columns' values and setting that field as the sort key (Table 2.3). Then, 
we can use a non-unique field as the partition key.  

Table 2.3 Example entries from our DynamoDB using. Here, we created a new sort key, 
starttime_geo5_product, by combining the values from starttime_geo5_product to ensure the values are 
unique. The asterisk (*) indicates the partition key. 

starttime_geo5_product satellite geo5 product* starttime 

2023-07-24T01:30:00_ z8zep_NUCAPS NOAA20 z8zep NUCAPS 2023-07-24T01:30:00 

2023-08-31T18:48:00_qnyh6_NUCAPS NOAA20 qnyh6 NUCAPS 2023-08-31T18:48:00 

2023-09-19T15:09:00_ 7s0ns _AOD NOAA20 7s0ns AOD 2023-09-19T15:09:00 

 

AOD_v3r2_j01_s202309191509277_e2023
09191510523_c202309191601326.nc 

Figure 2.2 Illustration of GSI technique. The GSI duplicates the main table with different partition 
key and sort key combinations so that the system can perform multifaceted queries.  
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To illustrate, let us suppose a user makes the following query: 

Search for NUCAPS, from 2023-07-24 00:00:00 UTC to 2023-07-25 00:00:00 UTC, for a 
bounding box between 40.0-50.0˚N and 167.0-168.0˚E. 

The DynamoDB would then divide the table using the partition and sort keys : 

Index: timestamp_lat_long 

Key condition: Product = “NUCAPS” AND timestamp_lat_long BETWEEN “2023-07-
24T00” AND “2023-07-25T00” 

The pseudocode above will return a much smaller subset of values in the table. Then, we 
can further subset the results using the following filters (shown in pseudocode):  

latitude BETWEEN 40.0 AND 50.0 
AND longitude BETWEEN 167.0 AND 168.0 
AND timestamp BETWEEN 2023-07-24T00 AND 2023-07-25T00 

While we did not implement this approach, the fact that it uses only one table and fewer 
read capacity units indicates it will provide cost savings over the GSI approach. 

2.3.2 Geolocation 
As described in Section 1.2.2.3, we designed a system that estimates the data location 
based on the filename. We leveraged a satellite two-line element (TLE) along with the start 
and end times in the file to approximate a data file's position (Figure 2.3a). This approach is 
agnostic to the data product because it only requires knowledge of the satellite name and 
the observation capture start and end times. There is no longer a dependency on data-
specific readers like HDF libraries or specialized file readers, making the system more 
flexible for accommodating new data. A drawback is that the file position is not exact but is 
the nadir point of the center of the granule. To address this, we designed the search to 
return more results than needed, which can be further filtered in later processing steps once 
the file has been opened. 

While we store the file’s latitude and longitude values in the DynamoDB, we also convert the 
coordinates to a geohash to improve the search speed (Figure 2.3b). Geohash is a spatial 
data encoding system representing a rectangular geographical area as a concise string of 
letters and digits (AWS, 2020). Geohash facilitates storage and speeds up the query. 
Increasing the length of the geohash string can improve the precision of the area it 
represents. What makes geohashes particularly useful is their hierarchical nature: similar 
geospatial areas have geohash strings that share common prefixes (Figure 2.3c). For 
example, the geohash "dqc" might represent a large area near Washington D.C. By extending 
it to "dqcjqf," the area becomes more precise, pinpointing a specific neighborhood or even a 
street within that city. This hierarchical structure enables efficient spatial queries and 
proximity searches, as areas near each other often share parts of their geohash strings. 
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Some popular catalog options like STAC use very precise polygons to describe the exact 
granules, which can lead to more accurate search results. These two approaches are not 
mutually exclusive. One can design a system that opens a file, reads the granule 
information, and stores a polygon in the DynamoDB to follow the STAC specification. The 
same DynamoDB can use the TLE/geohash approach to quickly subset the data. Then, the 
system can use a Python script in Lambda to perform a slower but more precise process, 
like polygon intersection, on a much smaller subset of the data catalog. 

2.3.3 Ingest Lambda 
Lambda is helpful because it can process data immediately after it is added to S3 (also 
called an event-driven trigger). In our EO-DT, as soon as a satellite data file is uploaded, the 
Lambda function parses it, extracts necessary metadata, and stores it in DynamoDB without 
any manual intervention or the need to run a constantly active server. We call this process 
the Ingest Lambda to distinguish it from other Lambda functions. 

We wrote our ingest script using Python because it is natively supported in Lambda. We 
used the AWS Serverless Application Model (SAM) to develop and deploy the code. SAM is 
an open-source tool that streamlines building and deploying serverless applications on AWS, 
including Lambda functions. Utilizing SAM for Lambda deployment means you can define 
your function, its event sources, and any necessary AWS resources (like DynamoDB tables) 
in a single SAM template. When deploying with SAM command line interface (CLI), it 
packages your code, uploads the package to Amazon S3, and uses CloudFormation to 
deploy your serverless application. The SAM CLI also offers local testing capabilities, which 
are used to test our Ingest code in a Docker environment that simulates the AWS runtime. 

The main steps in our ingest code are as follows: (1) parse the filename for a product, 
satellite, start time, end time, and creation time; (2) determine the TLE from the satellite and 
start time and end time, (3) convert to geohash, (4) add the result to the DynamoDB. In its 
entirety, the process takes 10s per invocation. Some minor challenges in the setup include 
inconsistency in filename conventions for different satellite systems. For example, GOES 
data uses the day of the year to specify the date, while JPSS uses a year-month-day format. 
Level 1 JPSS data separates the day from the time differently than for JPSS data products. 
As a result, we had to write multiple filename parsers. 

Figure 2.3 The geolocation for new files is cataloged (a) using the satellite two-line element (TLE) to determine 
the latitude and longitude coordinates based on the file start and end times. The coordinates are then 
converted to (b) a geohash, which is a concise string representation of the location. (c) shows how the decimal 
precision of the latitude and longitude coordinates are expressed by longer geohashes. 
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An important consideration is that a satellite’s TLE changes over time to reflect satellite orbit 
changes due to drag. So, the TLE table must be updated once a day to reflect these 
changes. We learned this lesson quite painfully when our initial testing did not return results 
in the specified bounding box when we tested it in March. 

Lambda deployment involves zipping the entire contents of a working directory and 
uploading, so we included a static copy of the TLE in the package. The query results were 
thousands of miles away from our bounding box by September because we were using an 
outdated TLE. Because we did not want Lambda to download the current TLE file every time 
it was invoked (which may lead to our IP being blocked by the host website), we wrote a 
script to download the TLE once a day to our local S3 and Lambda, then imports it each time 
it is invoked. 

2.3.4 Search and Map Lambdas 
AWS API Gateways connect a front-end portal with server-side operations, such as our user 
interface. API Gateway creates RESTful APIs that trigger AWS Lambda functions, enabling 
client applications to interact with your backend without the servers' direct involvement. We 
chained API gateway with a Lambda function to allow users to search our DynamoDB. We 
call this process the search Lambda.

 
Search Lambda is triggered by a user request to the API gateway (e.g., when the user clicks 
the search button in Figure 1.15). Figure 2.4 shows a simplified diagram of this part of the 
architecture. The user portal is represented by CloudFront and S3 icons. The user’s request 
(REQ) will contain their desired query parameters, such as the product name, dates, and 
bounding box. The API gateway sends a request to search Lambda, which queries the 
DynamoDB. The search Lambda handler function ensures the query is valid, performs the 
GSI search on the DynamoDB, finds the intersection of the results, and returns the matching 
files to the API gateway (RESP). The files are displayed on the top right-hand side of the 
website. While not shown in the figure for simplicity, the search results are saved as a CSV 
file on an S3 bucket. At this stage, the user is given a random search ID number to track 
their requests through the system. 

The third and final lambda generates two maps for the user (map Lambda). This Lambda is 
invoked through the API gateway when a user requests a map. The user has two options: 
display the data as a quick look (Figure 2.5a) or regrid their results and visualize them 
(Figure 2.5b). Examples of each are shown in Figure 1.16. 

Figure 2.4 The architecture 
pattern for an API gateway to 
lambda to DynamoDB. 
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The quick look architecture is relatively simple. The API gateway sends the user request for a 
“quick look” along with the search ID number, thereby invoking the map Lambda. The Map 
Lambda opens the corresponding search ID CSV file stored on an S3 bucket and reads the 
first filename. Our approach was simplistic in the demo. Note that in an operational EO-DT, 
we envision the user will be able to select which files they wish to display. It is here that we 
open the files themselves for the first time. Each product requires a unique reader to parse 
the file contents. We only extracted one variable for simplicity, even though numerous fields 
are in the files. In the future, we imagine the end user could use the file contents as a 
search parameter. Because the quick look is intended to display data rapidly, we 
downsampled the data at a ratio of 10:1 for some of the larger files, such as those from the 
full disk ABI. We selected a Python package called Folium to generate a vectorized data 
map. Folium helps quickly create an HTML file with the data converted to a vectorized 
format and overlays it on a Leaflet map. Leaflet (https://leafletjs.com) is a popular, 
lightweight, open-source JavaScript library for interactive maps. The leaflet map is uploaded 
onto the web portal S3 bucket and automatically loaded as a new tab in the users’ web 
browser. 

Users can also regrid their data to a regular grid. The user has three options for the 
demonstration: 1.0˚x1.0˚, 0.5˚x0.5˚, and 0.1˚x0.1˚ latitude and longitude. In the future, 
we envision users entering custom values or using more complex grids. If “gridded” is 
selected, the same map Lambda is triggered, but it does not make a map yet. Instead, it 
opens the CSV file, appends the users' grid choice, and copies the file to an S3 directory 
monitored by our data fusion script for activity. We will describe our data fusion approach in 
the next section, Section 2.4. Early in the project, we considered using Lambda to perform 
data fusion. However, Lambda has strict size limitations for the entire package (1GB) and 
strict processing time limits (<15 minutes to run). The data fusion processing time may 
exceed the time limit for large requests. Instead, we installed the code on an EC2. For a fully 
operational EO-DT, we recommend creating a docker image and deploying using a service 
like Amazon Elastic Container Service (ECS) to fully scalable the resources. Once the file is 
regridded, it is saved to another S3 directory linked to the map Lambda. If a new file is 
present, the map Lambda triggers. Lambda then reads the file and displays the regridded 
data on the leaflet map, which is then opened as a new tab on the user’s browser. 

Figure 2.5 Shows two patterns, one for (a) the native grid “quick look” map display and another for (b) a 
regridded map which requires additional processing on an EC2. 
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We learned several lessons using our approach. The fine print around the AWS resources 
must be factored in early in the design because they impact the architecture significantly. 
For example, there is a 6MB size limit on the Lambda response, so large results need to be 
uploaded as a file and not delivered to other resources as a message. Similarly, there are 
size and timeout restrictions for using Lambda. For simple processes, Lambda is both 
efficient and cost-effective. However, more complex code or code with large dependencies 
must be deployed using a container or a persistent service like EC2. We recommend 
carefully defining your requirements upfront to fully consider the trade-off between on-
demand and persistent resources. 

2.4 Classical Methods for Data Fusion 
In earth science, spatial regridding is the "process of interpolating from one grid to another" 
(NCAR, 2014). More broadly, the concept of combining multiple datasets is referred to as 
data fusion, which can be defined as "a process dealing with the association, correlation, 
and combination of data and information from single and multiple sources to achieve 
refined position and identity estimates." (White, 1991; Steinberg et al., 1999).  

We envision that our data fusion system will enable the user to specify the required 
datasets, and then EO-DT will find the data and combine them on a common space/time 
grid for analysis and display. If there is sufficient end user justification, NESDIS generates 
analysis-ready data via a Level 3 product, where data are typically merged from multiple 
satellites and stored on a common, uniform grid. Level 3 data is essentially “pre-processed” 
for the end user to save them time. While cloud storage is relatively inexpensive, for less 
popular datasets, on-demand processing charges may be cheaper than maintaining a full 
data record. The resulting custom datasets may serve a greater variety of end users, 
whereas a static Level 3 product may only serve a few power users. 

This section describes our on-demand algorithm for spatial mismatch and gap filling using 
classical techniques in the prototype EO-DT. We use the term classic to indicate data fusion 
techniques that do not involve ML. We also explored using ML for gap filling and other 
challenges, such as leveraging data redundancy from multiple satellite instruments, in 
Section 3.2. 

2.4.1 Spatial Regridding  
One of the primary challenges of combining satellite datasets is addressing the mismatch of 
observations in time and space. We show some examples of the different grids and 
resolution of NESDIS in Table 2.4. Even if from the same sensor, datasets can have varying 
resolutions and grids. While humans may be able to visually combine mismatched 
observations, software, models, and analysis tools require the datasets to be on the same 
grid. Regridding to a common grid makes the data more analysis-friendly, but at the expense 
of information loss or distortion. Fine features in the datasets are smoothed over or lost 
entirely if the projected grid spacing is too large. The data can appear noisy if the projected 
grid is too small. Regridding can be inherently slow, especially when searching over many 
pixels for nearest neighbors. Selecting an appropriate solution is complicated because 
satellite data footprints often vary depending on global position and viewing angle, leading 
to irregular, non-uniform-spaced horizontal grids (Shea, 2014). GOES data is a regular grid in 
satellite viewing angle space (called the fixed grid; NOAA, 2019) but becomes irregular when 
projected onto latitude-longitude coordinates. Irregularly gridded satellite data is often 
combined with model data on regular, uniform grids. For example, satellite observations are 

https://climatedataguide.ucar.edu/climate-tools/regridding-overview
https://apps.dtic.mil/sti/pdfs/ADA529661.pdf
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often combined or assimilated onto the GFS model’s regularly spaced grid. There are many 
other possible grids in the Earth sciences (e.g., Equal area, curvilinear, hexagonal, polar, and 
meshes), but most spatial data is either in an irregular or regular latitude-longitude grid. 

Table 2.4 shows the differences in resolution across NESDIS earth observations data. Level 1 and Level 2 
products have different resolutions, making it difficult for users to combine. 

Product Name Platform Resolution (km) Grid Type 

NUCAPS NOAA-20 50 Irregular swath 

Aerosol Optical Depth NOAA-20 .75  Irregular swath 

Aerosol Optical Depth GOES-16 2 Regular viewing angle 

Sea Surface Temperature GOES-16 2 Regular viewing angle 

Ice Concentration and Extent GOES-16 2 Regular viewing angle 

Active Fire GOES-16 2 Regular viewing angle 

ATMS TDR NOAA-20 15 Irregular swath 

GFS - 10 Regular grid 

When converting a regular grid to a different regular grid, you are taking pixels with coarser 
or finer spacing than the target and interpolating them onto the target grid. Since regular 
grids have consistent spacing, the relationships between grid points are predictable. The 
ratio between source and target grids is often an integer or simple fraction. For instance, 
regridding from a 2 km grid to a 1 km grid involves a direct 2:1 relationship, making 
interpolation straightforward. Python has several fast routines that perform regular 
regridding, such as the ndimage and interpolate.griddata functions in SciPy 
(https://scipy.org). 

Converting data from an irregular grid to a regular grid is challenging and requires complex 
interpolation. Some interpolation methods include inverse distance weighting, kriging, or 
natural neighbor techniques, which are more computationally intensive than nearest 
neighbors and linear interpolations. For each grid cell in the regular grid, the algorithm must 
search for the nearest data points in the irregular dataset. When irregular data is scattered 
sparsely across the globe, there are a lot of different approaches. For example, the data can 
be binned to a coarse grid and then interpolated to the target grid. The interpolation method 
can be bilinear, spline, or nearest neighbor using piece-wise interpolation. Alternatively, the 
input data can be distance-weighted to the target grid points. A drawback is that this type of 
interpolation can be computationally intensive and slow. 

If the irregular data is dense, data binning routines are appropriate and relatively fast. Data 
is averaged in each regular grid data bin. Some data binning routines will allow for weights, 
weighing the data in a bin based on how close it is to the grid point. Our methodology in the 
EO-DT assumes the measurements are dense, although, in practice, this is incorrect 
because there are missing values due to clouds, orbit gaps, sun glint, and other retrieval 
errors. We will address this in Section 2.4.2. 
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Some of our goals were to write an algorithm that was (1) dataset and grid agnostic and (2) 
met a processing time requirement of < 10 minutes to run a global day. The latter is highly 
dependent on the instance type running the data, so while we optimized the code, this was 
not a particularly restrictive environment. 

Our regridding algorithm gathers all the data within each grid box centered on the grid point 
(Figure 2.6) and assigns the average value to the grid point. This average data regridding 
works best if many data points are in the fixed grid boxes. Statistics can be generated on the 
data inside the bin, which is useful in evaluating the representativeness of the gridded data. 
The data in the box can also be weighted so that some measurements contribute more to 
the average - this can be important if one data set adds a significantly more amount of data 
to the bin than another (e.g., aircraft versus satellite) or if one set of data is considered more 
accurate than another. 

Our pseudocode for the primary subroutine that grids the data is: 

1. We initialize our array with a fill value (-999.0) 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛[𝑖𝑖, 𝑗𝑗] = 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓_𝑣𝑣𝑛𝑛𝑓𝑓 

for all 𝑖𝑖 in [0, 𝑓𝑓𝑛𝑛𝑛𝑛(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜) − 1] and all 𝑗𝑗 in [0, 𝑓𝑓𝑛𝑛𝑛𝑛(𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜) − 1]. 

2. For 𝑗𝑗 in [0, 𝑓𝑓𝑛𝑛𝑛𝑛(𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜) − 1]: 

 𝑖𝑖𝑓𝑓 (𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜[𝑗𝑗] − 𝑛𝑛𝑦𝑦 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖 < 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜[𝑗𝑗] + 𝑛𝑛𝑦𝑦) and ( 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≠ 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓_𝑣𝑣𝑛𝑛𝑓𝑓 ). 

for 𝑖𝑖 in ([0, 𝑓𝑓𝑛𝑛𝑛𝑛(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜) − 1]): 

𝑖𝑖𝑓𝑓 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜[𝑖𝑖] − 𝑛𝑛𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖𝑖𝑖 < 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜[𝑖𝑖] + 𝑛𝑛𝑥𝑥 

 μ = ∑ 𝑑𝑑𝑑𝑑𝑜𝑜𝑑𝑑[𝑘𝑘]𝑘𝑘
𝑐𝑐𝑖𝑖𝑜𝑜

 where the sum is over valid ( 𝑘𝑘 ) 

newdata[i, j] = μ 

3. Return newdata. 

Where 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑦𝑦𝑖𝑖𝑖𝑖 are the input data coordinates in the native/original grid, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the 
array containing the original data values at those coordinates, 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 are the 
coordinates of the regular new grid, 𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓_𝑣𝑣𝑛𝑛𝑓𝑓 is the placeholder value to indicate absent or 
invalid data, 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 are the half the distance between consecutive grid points in the x 

Figure 2.6 Shows how average data 
regridding works with the small dots 
representing the satellite measurements, 
small squares in situ measurements. The 
larger squares are the values mapped to the 
regular grid. 
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and y dimensions of the regular output grid, respectively, and 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the returned array 
containing the regridded data. 

Like all other components in the EO-DT, we wrote the regridding code in Python. We chose to 
write the regridding subroutine in Cython, a programming language designed to combine 
Python's ease and readability with C's performance. The Cython syntax is like Python and 
has built-in support for NumPy, but Cython functions must be compiled before running and 
integrating into pure Python scripts. The Cython-enhanced code ran significantly faster, 
reducing computing time from 6 minutes to < 1 minute per granule compared to a pure 
Python approach. 

2.4.2 Gap Filling 
Gap filling is the process of filling in missing or corrupted data points within a dataset. 
Satellite measurements produce data gaps for various reasons, such as instrumental 
malfunctions, data transmission errors, or environmental factors like cloud cover obstructing 
the sensor's surface view. These gaps can hinder data analysis, as continuous data 
coverage is often essential for understanding environmental trends and patterns. Our goal is 
to create a complete and continuous dataset that maintains the integrity and accuracy of 
the original observations. Proper gap filling is crucial to ensure that the resultant dataset is 
representative and does not introduce artificial biases or errors into subsequent analyses.  

We developed a use case to evaluate two classical gap filling methodologies feasible in the 
digital twin. We chose to study wildfire smoke plumes using AOD from ABI and VIIRS for 
several reasons. First, wildfire smoke plumes are of interest to multiple agencies, including 
the EPA, USGS, and NASA, and are particularly important given the record fire season in 
Canada in 2023. Additionally, wildfire smoke presented an opportunity to merge satellite 
and model data. While our results center on this use case, the gap filling techniques we 
developed can be extended and adapted to other data products. We did not install a gap 
filling method in our prototype EO-DT. If installed, our gap filling methodology could be run 
within the regridding code, and there would be no changes to the cloud architecture in 
Figure 2.1. 

AOD is particularly prone to missing values for several reasons. Aerosols reflect sunlight and 
AOD is measured in the daytime as an enhancement in the visible and NIR solar reflectivity. 
Clouds obscure the surface and prevent AOD measurements. In addition, sun glint within the 
field of view will appear as an enhancement in reflectivity and is indistinguishable from AOD 
or cloud enhancements. Unlike clouds, the position of the glint is known, and GOES L2 AOD 
product is masked over the glint region. Because of clouds and glint, a large portion of the 
viewing region is obscured at any moment. However, AOD measurements from geostationary 
instruments are made every 15 minutes, and clouds and the glint change locations. 

We tested two methodologies, backfilling and inpainting, to handle missing pixels, using 
temporal and spatial data for interpolation. Figure 2.7 shows an illustration of backfilling. 
The current image (T=0) has missing pixels. The algorithm searches backward in time to the 
previous timestep (T=-1), finds a valid pixel, and propagates it forward to fill the missing 
pixel. A pixel is missing in T=0 and T=-1 but is available in T=-2 and propagated forward. The 
combined data are shown on the right in the backfilled field.  
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In contrast, inpainting fills missing data from adjacent data or other data sets not included 
in the original set (e.g., model predictions). For example, a single missing pixel or small 
cluster of pixels could be filled in using neighboring pixels. An advantage of inpainting is that 
it does not require a long time series of data but it does require accurate quality flags; 
otherwise, neighboring pixels may be filled with inaccurate data.  

Figure 2.8 shows the results from the two gap filling approaches algorithm. Figure 2.8a 
shows the original scene, and Figure 2.8b shows the backfilled scene with most clouds 
removed. Backfilling is quite effective at removing clouds because of cloud motions. If we 
assume that AOD is slowly varying over a few hours (Figure 2.8c), backfilling provides a 
reasonable approach to generating more complete data fields for an EO-DT user. The 
inpainting applied (Figure 2.8d) was less successful. The reason is that the GOES AOD 
algorithm often mistakes cloud edges for high AOD regions. Inpainting then pushes these 
high AOD regions into the gaps, as seen in the lower left.  

When using regridding methods, several caveats must be kept in mind. First, regridding and 
gap filling create “new” observations derived through interpolation, extrapolation, and 
averaging techniques. Hence, it is important to understand the data's variability when 
employing these methods. Second, numerous datasets are accompanied by quality flags 
that are pivotal in assembling fused data. The challenge is that these quality flags are 
defined differently across multiple datasets without any standard protocol. For instance, the 
quality flags for SST are distinct from those for AOD. Finally, cloud masks help filter bad 
pixels, but not all products explicitly have them. Surface observations are especially 
vulnerable to cloud mask flags. Sometimes, these cloud masks are integrated into the 
quality flags, while they exist as separate entities in other datasets. Any data treatment 
system must be well-informed about the data screening methodologies utilized during the 
production of Level 2 data. Data fusion is not simply a spatial process but needs to include 
temporal variations, especially for rapidly varying geophysical variables. 

Figure 2.7 Backfilling 
technique for AOD. Data is 
brought forward in time to fill 
in regions obscured by glint 
and clouds. 
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2.4.3 Summary 
We developed a fast, simple regridding method that is agnostic of the data source and can 
be applied to all NESDIS datasets without re-training. We successfully tested and installed 
this code into our EO-DT prototype, and it successfully transformed satellite datasets from 
an irregular grid to a regular grid at a user’s requested spacing. The code processed a data 
granule on one CPU core within 30 seconds to 3 minutes for a 50 km and 750 m VIIRS 
granule, respectively. Processing speeds can be improved by utilizing multithreading and 
containerization. 

While ML-based regridding schemes are popular in the Earth Sciences due to their ability to 
learn complex patterns and adapt to varied datasets, classical regridding methods like the 
one we discussed here offer several advantages. First, classical regridding methods, such as 
bilinear or nearest neighbor interpolation, are deterministic and have a precise 
mathematical formulation. They produce consistent results and are generally more 
accessible for users to understand and interpret. While slower, many classical regridding 
techniques are less computationally intensive than their ML counterparts, as some ML 
models require GPU-equipped instances for training.  

Figure 2.8 Illustration of backfilling using combined GOES-16 and NOAA-18 AOD. (a) Shows an example 
image at 16:00 UT with clouds and glint contaminating most of the field.  Using 12-hour backfilling (part b) 
most of the cloud fields are filled in with AOD data. (c) Shows how far back in time (hours) the algorithm 
had to go to fill in the cloud field – most of the data are replaced with information only a few hours old.  (d) 
Shows the addition of inpainting. 
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Our analysis identified several bottlenecks that made data processing and usage difficult. A 
primary challenge arose from the unpacking and utilization of typical NetCDF4 files, which 
contain numerous variables helpful to an algorithm developer but may not apply to the 
average user. Unfortunately, the user must download the entire file to access only a small 
part of its contents. For instance, we only needed to access four variables (AOD550, QCAll, 
Latitude, and Longitude) out of the 21 geospatial variables in the VIIRS AOD. We 
recommend adopting a cloud-optimized file system to expedite the processes of opening, 
downloading, and further processing the files. (Section 4.2). While our cataloging system 
(Section 2.3.1) offers a solution for geolocating LEO data products, integrating orbit region 
and time into the file name could facilitate regional sub-selection for average users.  

As notes earlier, the structure and meaning of quality flags vary significantly across NESIDS 
datasets. To use these flags efficiently, we constructed a table defining the semantics of 
each quality flag. Harmonizing the meaning and structure of the quality flags in a digital twin 
is important to broaden the use of NESDIS’ high-quality data products.  

2.5 Data Analytics Dashboards 
A digital twin can quickly produce a lot of information, thus requiring tools to organize the 
various data, metrics, and visualization concisely. We wanted to provide a one-stop location 
for managers to examine all the data that the EO-DT produces. Data analytics dashboards 
have become an increasingly popular way to organize complex data to produce actionable 
management insights (Pauwels, 2009; Microsoft (n.d.)). Static graphics and reports were 
traditionally the primary way of communicating information to management. While useful, 
the increasingly data-driven nature of society means stakeholders need information at 
smaller timescales – by the week, day, minute, and, at times, even on second timescales. 
These new timeliness requirements mean communicating analytics must be performed 
using real-time software tools. Furthermore, decision-makers may want to interact with the 
data, which is impossible using a static medium. Thus, there has been a proliferation of “at 
a glance” tools everywhere, from our personal banking accounts to technology giants like 
Google, Amazon, and Microsoft. 

In digital twins, dashboards can show the various components of the system in real-time. In 
a manufacturing environment, a digital twin dashboard can display all levels in a factory, 
from the shop floor to management (Lin and Low, 2021). A dashboard can quickly identify 
errors or bottlenecks in the system and enable a fast fix to address the problem. The main 
challenges include collecting and combining data sources and developing user-friendly 
visualizations. 

In creating a dashboard, we could have developed one entirely from the ground up, but we 
found that many open-source platforms provide a clean interface and seamlessly integrate 
with cloud computing resources. The costs are generally free for under five users but can 
accommodate more users for under a few hundred dollars a month. We evaluated several 
open-source services, which are shown in Table 2.5. Our selection criteria included (1) how 
well the platform interfaced with our EO-DT system and data streams, (2) if they produced a 
variety of customizable visualizations, including from geospatial data, and (3) if the 
operating costs were within our budget. Since our project focused on open-source solutions, 
we did not evaluate commercial platforms, like Tableau or Microsoft PowerBI. 
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Table 2.5 List of dashboard services evaluated and compared for the EO-DT. 

Name/Preview Website Strengths Drawbacks 

Grafana 

 

https://grafana.com/ - Many templates and 
plugin for GIS 

- Well documented 
online 

- Integrates with AWS 
services 

- Highly customizable 

- Setup and learning 
are challenging 

Dashbuilder 

 

https://www.dashbuilder.org/ - Does not require 
coding expertise 

- Examples included ML-
model monitoring 

- No fully managed 
version 

- Not easily integrated 
with other tools 

- Not easily 
customizable 

- Limited GIS support 

Freeboard

 

http://freeboard.io/ - Simple to setup and 
learn 

- Easily add data 
sources  

- Easily shareable 

 

- Fewer data 
visualization options 

- Requires JavaScript 
knowledge 

- Limited online 
community 

Most dashboard platforms provide online interactive samples so potential customers can 
see if the dashboard meets their needs. While ease of use is important for a digital twin, we 
especially wanted to select a system that could handle many different visualizations. 
Dashbuilder and Freeboard had many types of bar and line plots, but Grafana has a more 
extensive number of plots. We did not need the dashboard to display raw satellite imagery, 
but we wanted it to display maps showing satellite positions and where users queried data 
products, which requires a map. While none of the dashboards had more than two 
visualizations, Grafana’s maps were more customizable. For the demonstration, we also 
wanted to quickly deploy the system to focus on the types of analytics that would be useful 
for an EO-DT, so a low-cost, fully managed system was useful for us. 

Of the three platforms, we ultimately selected Grafana because of its extensive online 
documentation integrations with AWS CloudWatch and S3. Figure 2.9 shows the simplified 
architecture for our data to flow into Grafana. Data from CloudWatch flows directly into 
Grafana using an access key for security. From there, Grafana can access the hundreds of 
possible metrics on AWS resources. We also wanted to monitor how quickly user requests 
were processed, so we wrote Python scripts that tracked the CPU, memory, and run times of 
specific code. In the future, this process can be containerized and directly monitored in 
CloudWatch. We also wanted to observe data flows on the NODD, so we wrote Python scripts 
to capture the latency and quality flag statistics. Additionally, we monitored our anomaly 
detection subsystem's runtime and anomaly classification. These data flows are 
summarized in Table 2.6. 

https://grafana.com/
https://www.dashbuilder.org/
http://freeboard.io/
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There were some challenges to using Grafana. Generally, most dashboard services are 
designed for monitoring computer systems since software developers are the most likely to 
contribute to the code base. Grafana supports non-traditional visualizations, such as video 
and GIS, but these displays are not as mature as those designed for time series data. 
However, we felt that an off-the-shelf tool like Grafana was appropriate for the 
demonstration and could be used in a fully functional EO-DT (if built). We recommend that if 
NOAA builds an EO-DT, the development team gets a clear set of visualization requirements 
from the dashboard's various users and allows the system users to interact with the 
visualization examples online. If sufficiently complex, such as requiring very advanced GIS 
visualization, the dashboard will likely need to be built from scratch. 

Table 2.6 The component being monitored in Grafana, along with the data source and the specific metrics 
that tracked in real-time. 

EO-DT Component Data Source Metrics Tracked 

Catalog, archive, and 
processing 

 

CloudWatch - Number of SNS/SQS 

- Lambda Invocation Sound 

- DynamoDB read/write 

- CPU/GPU usage 

Search and dissemination EC2 and Python Scripts - Data products queries 

- Region users searched 

- Data fusion latency 

Downlink and ingest  NOAA NODD and Python 
Scripts 

- Product latency 

- Data quality 

- Anomaly detection 

Figure 2.9 Data flow to the Grafana dashboard, 
which is fully managed via Grafana Cloud. 
Grafana displays analytics from multiple 
sources in a single location. CloudWatch tracks 
AWS analytics and Grafana can natively access 
the data in real-time. We wrote several Python 
scripts to monitor specific process in our EO-DT, 
such as the processing time for data fusion and 
whether data contains anomalies. We also 
monitored the NODD to check the latency and 
quality of Level 1 datasets. 
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While we chose to use the fully managed Grafana Cloud, Grafana is open-source 
dashboards can be self-hosted for free. An advantage of Grafana Cloud is that the developer 
only must focus on setting up the dashboard and metrics and less on the infrastructure to 
support it. We discuss the differences in cost in Section 5.3.2. 
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3 Enhancements using Machine Learning 
3.1 Anomaly Detection in Satellite Datasets using Convolutional Neural 

Networks 
NOAA has developed an extensive data product portfolio to monitor and forecast the 
environment. For the data to be useful, end users must be assured of the “trustworthiness” 
of the data, a challenge that NESDIS has met using strict statistical requirements. Data quality 
assurance is commonly provided to end users globally, using pixel-by-pixel quality assurance 
flags in NESDIS products (NOAA, 2019). Requirements can range from global comparisons 
with models and ground truth to strict error and standard deviation values, which can vary by 
Earth surface type, degree of cloud contamination, and solar zenith angle, to name a few. For 
example, the AOD product for GOES-16 has respective precision and accuracy of 0.25 and 
0.05 for 0.1<AOD<0.8 over land globally when compared with AERONET, a network of in situ 
measurements (Laszlo and Liu, 2022). Distilling complex information like data quality into 
concise, digestible, and actionable information is challenging in big data analytics. 

Moreover, it is also essential for the end user to understand data quality on a pixel-by-pixel 
and scene-by-scene basis. NESDIS communicates pixel-level quality using data quality flags, 
where each pixel is labeled as no retrieval, low, medium, or high quality. Reasons for the 
classification can vary from product to product, but for AOD, some factors include estimated 
cloud contamination, coastlines, bright surfaces, and high solar zenith angle. Communicating 
the uncertainty of datasets is essential for end users and decision-makers to arrive at correct 
and actionable conclusions based on the information they present. 

Identifying scene-by-scene data quality is more challenging but possible using deep learning 
and real-time analytics within an EO-DT. Scene-based quality control requires understanding 
baseline patterns and robust detection of deviating from the norm. We define dataset 
anomalies as unexpected and widespread data quality degradation. While algorithm and 
sensor level strengths and weaknesses are well known, classifying regions of anomalous data 
(and labelling by anomaly type) has not been thoroughly explored. ML-based solutions are 
important because simple counts of scene quality flags alone cannot identify if anomalies are 
caused by sensor degradation or data outages due to, for example, solar flares. Thus, utilizing 
deep learning has the potential to identify regions of poor or noisy performance and provide 
correction (Gibert et al., 2018). 

In this section, we develop and demonstrate an anomaly detection system prototype within a 
the EO-DT to classify imagery with real-time anomalies. Figure 3.1 shows examples of 
anomalous data consisting of stripes or chunks of missing values. As the GOES and VIIRS 
satellites produce satellite imagery, the Digital Twin Anomaly Detector (DTAD) subsystem 
analyzes Level 1 data. It determines if the imagery is valid using a pre-trained ML model 
instead of relying on quality flags. By relying on a pre-trained model, the digital twin can adapt 
to new anomalies as they arise.  

On a broader scope, we envision an anomaly detection scheme to process data in real-time 
and apply labeling and possibly data correction where possible. In our prototype, we seek to 
(1) identify which deep learning techniques and frameworks can meet NOAA requirements, 
(2) measure the skill of the approach to progressively more complicated results, and (3) 
design the baseline cloud architecture needed to implement such a system for cost and 
resource needs. 
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The DTAD subsystem is configured to perform near real-time classification of anomalies, 
which serves as a gatekeeping mechanism for other downstream systems within the DT 
service architecture. This prevents the dissemination of images containing anomalies to 
end-users. 

 

 

 

GOES-16 – Channel 08 GOES-17 – Channel 03 

 

 

GOES-17 - Channel 11 GOES-18 - Channel 13 

Figure 3.1 Examples of anomalies from GOES-R series L1b data showing missing data with various 
patterns. 

3.1.1 Methods and Datasets 
The DTAD constitutes a comprehensive toolkit developed due to the labor-intensive task of 
curating and classifying training data to create a highly accurate ML model. Within the DTAD 
framework, a set of utilities were devices to aid in assembling a dataset that consists of 
anomalous and non-anomalous satellite imagery. This dataset was used to train a new ML 
model using the PyTorch framework. In addition to the data preparation utilities, DTAD 
incorporates tools for model validation against new datasets to ensure performance 
continues to meet anticipated standards. Finally, the subsystem is engineered to perform 
near real-time analysis of data from the GOES and VIIRS satellites and offer timely 
classification of newly acquired imagery based on the presence or absence of anomalies. 
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The DTAD is a binary image classification system (Figure 3.2) trained using Convolutional 
Neural Networks. As a binary image classification system, the DTAD can answer the 
question of “Does this image contain anomalies?” with a “Yes” or “No” answer. Throughout 
the project, the DTAD was trained to be a multi-label classification system to try to answer 
the question “What type of anomaly does this image have?” with multiple anomaly times, 
including “blanks” (when the entire scene was black) “horizontal-stripe noise,” and 
“missing” (when the entire scene was white) image.  

3.1.1.1 Training for GOES ABI Data 
The DTAD subsystem initially underwent training utilizing data from the GOES series. All 16 
channels from GOES-16, GOES-17, and GOES-18 satellites were selectively downloaded 
from their corresponding S3 storage locations (Figure 3.3). The data was then split into 
"valid" (indicative of an anomaly-free state) and "invalid" (denoting the presence of 
anomalies) categories, as determined by the evaluation of the image's quality flags. Images 
with quality flags attaining a value of 0.989 or higher were categorized as "valid", while 
those registering a value below 0.989 were designated as "invalid.” We estimated an 
optimal threshold of 0.989 through iterative experimentation. 

Considering we needed thousands of images for optimal classification, the DTAD subsystem 
was augmented with a suite of utilities. These tools streamlined the download of GOES ABI 
imagery from AWS S3 storage and enabled subsequent classification based on a given 
classification criterion, such as 0.989 or 0.999. Moreover, an auxiliary utility was developed 
to enhance the efficiency of the iterative threshold determination process for the quality 
flag. This tool allows the operator to input a novel quality flag value, facilitating the 
immediate reclassification of the image sets. Concurrently, the utility segregates the images, 
directing them to their respective "valid" or "invalid" directories. 

Figure 3.2 Overview of the Binary Image Classification training paradigm. 
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Images procured from the GOES satellites were contained within large HDF files. For 
enhanced manageability and training feasibility, we downsampled these HDF files into more 
compact PNG files in the early stages of the project. To optimize and ensure better model 
performance, every image was integrated into the training framework, undergoing 
randomized transformations. We used this methodology to prevent incorporation of external 
biases in the training dataset. Specific transformations included converting images to 
grayscale, arbitrary flipping along horizontal and vertical axes, and resizing to 250x250 
pixels. The data were flipped to prevent overfitting based on location or semi-persistent 
features. 

Before commencing the training process, the entire dataset undergoes a randomization 
procedure, partitioning into an 80% segment for training and a 20% fraction reserved for 
testing. Partitioning the data helps guarantee that the data utilized for weight verification 
during backpropagation in training is distinct yet remains representative of the overarching 
training dataset. 

Upon ascertaining the optimal quality flag threshold and standardizing the requisite image 
transformations, the next logical progression entailed initiating the model's training phase. 
The desired accuracy for the model’s performance was to predict images 75% of the time or 
more correctly. 

Early in the project, we had to decide which ML Python package to use for training. 
TensorFlow and PyTorch are both free, easily accessible, open-source software libraries. 
TensorFlow is older and thus has more online documentation and community support. 
PyTorch is a popular tool because of its user-friendly interface and flexible design. Despite 
PyTorch's comparatively smaller ecosystem and restricted multi-GPU support, it was 
designated as the chosen framework for DTAD. This decision was due to several factors: 
PyTorch's seamless integration with Python and its more intuitive API, the provision of 
dynamic computational graphs that render it particularly conducive for intuitive processing 
and experimental endeavors, its robust foothold within academic circles, and its native 
support for the Open Neural Network (ONNX) format. 

After segregating the images into their respective directories, labeled as "valid" or "invalid," 
we initiated model training. We initially chose to use a convolutional neural network (CNN) 
with a custom-trained model. However, the model's accuracy did not achieve the desired 

Figure 3.3 Overview of the Anomaly Detection Workflow for GOES data. 
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benchmarks. The most proficient model trained under this paradigm attained an accuracy of 
75% in the binary classification of satellite images. Given how large some of the anomalies 
were, the accuracy was lower than expected. 

We used transfer learning to enhance the accuracy of the model. Instead of building a CNN 
model from scratch, we leveraged a pre-existing model and adapted it to our labeled data. 
ResNet-18 is a model trained on over a million images from the ImageNet database, 
categorizing images into 1,000 distinct object classifications, including items like keyboards, 
mice, and pencils (Figure 3.4). The Resnet CNN was selected for transfer learning due to its 
ability to address the vanishing gradient problem. Vanishing gradient occurs during 
backpropagation when the calculated gradients from the output layer progressively wane in 
magnitude as they traverse back toward the input layer. Vanishing gradients lead to 
suboptimal learning in the initial layers, resulting in longer training durations. 

 
We selected Resnet CNN because it incorporated a distinct neural network component 
called a residual block. This block is designed specifically to counteract the vanishing 
gradient issue. Within the residual block is a skip connection which circumvents one or more 
layers. This architectural design facilitates more streamlined backpropagation, enhances 
learning, and accelerates training speed. 

The pre-trained ResNet 18 model was trained on GOES-16, GOES-17, and GOES-18 
satellites for anomaly classification with an accuracy of 99.2%, much higher than that of the 
custom CNN model (Table 3.1). 

Figure 3.4 Overview of the ResNet 18 model. Adapted from https://arxiv.org/abs/1902.08897 
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Table 3.1 Confusion matrix showing the ResNet-18’s performance classifying anomalies found in GOES ABI 
L1b imagery between 04/01/23 - 04/05/2023.  

 

 

 

 

 

ML 
Classification 

 Actual Classification 

Anomaly (Invalid) Normal (Valid) 

Anomaly 
(Invalid) 

 

94 
True Positive 

14 
False Positive 

Normal 
(Valid) 

 

19 
False Negative 

3,836 
True Negative 

Accuracy: 99.2% 

 

We initially envisioned installing the DTAD subsystem in a Lambda function. However, the 
training model alone was 43 MB, and PyTorch can exceed 100 MB, exceeding the maximum 
Lambda deployment size. Owing to this limitation, the DTAD subsystem was instead 
deployed on an EC2 instance using a cronjob set to execute every 15 minutes. In case of an 
error, the DTAD subsystem records the last checked timestamp, ensuring that any new files 
added since its previous run are processed. Consequently, in scenarios where the system 
downtime exceeds 15 minutes, it can process all files from the point of the last operation. 

Upon deployment and when tested against real-world data, the model's accuracy 
experienced a slight drop, descending from 98.9% to 96.5%. The lower is expected because 
there may be anomalies present in unseen data that do not match that in the training 
dataset. After installation, we found numerous examples of the DTAD performing well. Figure 
3.5a shows a screenshot of the DTAD installed in the EO-DT dashboard. The dashboard 
displays a time series of the GOES-18 ABI Channel 16 state, where green means the data 
are valid and orange means invalid. At 2023-09-26 20:00 UTC, an anomaly was detected. A 
subsequent check on the CIRA SLIDER web portal shows missing data (Figure 3.5b). The 
detection scheme exceeded our requirements despite the slight reduction in detection 
capability when processing unseen data. 
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3.1.1.2 Training of NOAA-20 VIIRS Data 
Leveraging the GOES anomaly model, we developed an analogous strategy for VIIRS imagery 
data. However, VIIRS had fewer real-world anomalies, and it was more challenging to build a 
training dataset. Instead, we created a synthetic training dataset that injected noise into 
images, mimicking real-world anomalies found in MODIS sensor data (Ren et al., 2010; 
Rakwatin et al., 2017). Two examples of striping patterns are shown in Figure 3.6. The 
"valid" directory was populated with 1,000 unmodified files from the NODD VIIRS S3 bucket 
using synthetic images. Then, the "invalid" directory was populated with the same batch of 
1,000 files altered with artificial noise infused or rendered entirely in stark white or pitch-
black shades. 

 

Figure 3.5 Example of the DTAD installed on the EO-DT. (a) shows the DTAD state diagram for GOES-18 ABI 
channel 16 in the dashboard, where green indicates valid data and orange is invalid. At 2023-09-26 20:00 
UTC, an anomaly was detected. (b) the real-time image, indicating an anomaly (Source: https://rammb-
slider.cira.colostate.edu). 



Science and Technology Corp. Nov 30, 2023 51 

Similar to the approach with the GOES data, we used the ResNet 18 model for the VIIRS 
data. However, the resulting model underperformed, attaining only a 50% accuracy rate. We 
identified a significant error in our training approach. The images labeled as "invalid" were 
the same as the "valid" images that had undergone noise injection. We recreated the 
training dataset, but this time, the “invalid” images’ base image layer was changed to be 
completely different from the “valid” images. With this rectification, there was a marked 
improvement in the model’s accuracy, reaching 89%, which was better than our goal of 75% 
accuracy for the model’s performance. 

3.1.2 Multi-Label Classification 
Once the trained binary classification model’s results met our accuracy goals, we explored 
using a multi-label classification framework, designed to test if ML between different types 
of anomalies in each dataset. Instead of using two labels, we developed a training dataset 
where the labels describe the type of anomaly they contained, such as “valid,” “blank,” 
“horizontal stripe,” and “missing.” While still simplistic, these labels could lead to more 
sophisticated anomaly detection. We again applied ResNet-18, with the final layer consisting 
of four distinct outputs corresponding to each of the expected labels in the training dataset. 

The original dataset contained folders with the folder names corresponding to each label 
used for multi-label classification. This data was split into 80% for training and 20% for 
testing. After training, the model was evaluated against the test dataset but was notably 
suboptimal. When evaluating against the test dataset, the model’s accuracy for the “valid” 
label was 0%, and its predictions for “blanks,” “horizontal stripes,” and “missing” categories 
appear to be arbitrary, lacking any discernible pattern. However, we are optimistic that the 
model could achieve better results with refinement.  

We have several strategies that might enhance model performance. Throughout the model 
training iterations, we observed a clear correlation between the quality of the training data 

Figure 3.6 Examples of synthetic anomalies using noise injected into valid VIIRS data. (a) Shows stripes in 
the center of an M12 image (indicated by the yellow arrow), which the model must distinguish from natural 
features like clouds. (b) shows another example for the M11 band, with more closely spaced stripes.  
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and the model's accuracy. A potential avenue of exploration would involve leveraging a 
training dataset comprised of authentic, real-world examples instead of relying on 
synthesized data. This approach would better mirror real-world conditions, akin to the GOES 
dataset, and could significantly bolster the model's predictive capabilities. An alternative 
direction for enhancing the model involves architectural modifications.  

While the Resnet-18 model has 18 layers, the Resnet family encompasses other variations 
like Resnet-34, Resnet-50, Resnet-101, and Resnet-152. By experimenting with these 
architectures, there could be potential for improved model performance.  

Fine-tuning the ResNet-18 hyperparameters may improve model performance. One 
hyperparameter to tweak is the learning rate, which determines the step size of each 
iteration while moving toward a minimum of the loss function. Smaller learning rates 
converge the step size slowly, while larger ones might overshoot the minimum. Another is to 
change the batch size of the training dataset as the model could have been given more 
training data to increase the accuracy but might also have decreased the model’s ability to 
generalize.  

Finally, the project could have also explored further Epoch values, which determine the 
number of times the learning algorithm will work through the entire training dataset. Even 
though the project did tweak with different Epoch values for binary image classification, it 
was not a rigorous enough test for multi-label classification. Finally, the project could have 
also explored tweaking the Optimizer and trying out different optimization functions to see if 
they improve the model’s performance. 

3.1.3 Explainable AI with Heatmaps 
Explainable Artificial Intelligence (XAI) is the concept of interpretability and transparency of 
an AI model. XAI refers to the methods and techniques that allow for a straightforward, 
understandable elucidation of the decision-making processes of ML models, particularly 
deep learning architectures and other complex models. XAI aims to demystify black-box 
models, increasing trust in ML. 

Gradient-weighted Class Activation Mapping (Grad-CAM) is an XAI solution to understand 
better how the model is predicting the data it has predicted as “valid” or “invalid” in our 
DTAD subsystem. Grad-CAM is a technique designed to enhance the interpretability of CNNs 
by visualizing which parts of an input image contribute the most to the network's final 
decision. This is achieved by creating a heatmap highlighting the image's most influential 
regions. 

The power of Grad-CAM lies in its ability to bridge the gap between model performance and 
human interpretability. Grad-CAM allows for this by visually pointing out the salient regions in 
the input data and offers the ability to make better decisions for debugging and refinement 
and developing trust with transparency into how the model functions. 
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Figure 3.7 shows four examples of “invalid” VIIRS images, their associated heatmaps, and 
the combination. On the left, (a) shows an invalid image with synthetic stripes on the bottom 
half and (b) the associated Grad-CAM heat map. The redder colors indicate that the ResNet-
18 is assigning more weight to the region of the image. By combining the two images in (c), 
we can see that the heatmap coincides with the location of the stripes. We found the heat 
maps helpful in refining our approach. 

3.1.4 Summary and Lessons Learned 
Our study showed a proof-of-concept for anomaly detection using ML. While our approach 
labels images as “valid” or “invalid,” our methods can be extended to identify the type of 
anomaly that was detected. Transfer learning emerges as a more straightforward approach 
to image classification, leveraging pre-trained models to expedite the learning process and 
often achieving commendable results. This approach saves computational resources and 
significantly reduces the time required for model training. We also explored how explainable 
artificial intelligence methods can be incorporated into the anomaly detection workflow. In 
particular, we found heatmaps useful for understanding what image features contributed to 
the ResNet-18 model’s classification. 

In terms of lessons learned, it is evident that models tend to perform better in offline testing 
and training than when running in real-time. This underscores that even with long training 
periods, there is inherent unpredictability in real-time data, and the models may confuse 
natural phenomena as an anomaly and vice versa. Secondly, our analysis suggests that 
training ML models with natural GOES-16 anomalies yield better results than synthetic data 
with the VIIRS data. For ML-based anomaly detection to advance as a field, we recommend 
that NESDIS science teams help create large, labeled repositories of training data for the 
community to explore. 

3.2 Deep Learning Methods to Enhance Data Fusion in a Digital Twin 
Classical methods of data fusion are described in Section 2.4. Classical data fusion 
methods involve coding and well-understood mathematical algorithms. ML methods embody 
a slightly different approach. In an ML software system, the ‘machine’ is treated as a 
software black box and is trained on observational data. More than one data set type may 
be used in training (e.g., AOD and fire locations). The machine ‘learns’ the behavior of the 
data. The machine is then tested on data sets withheld from the training. The tests are 

Figure 3.7 Invalid image classified by the DTAD subsystem. (a) shows the synthetic banding artifact added 
to VIIRS I-band 4. (b) is the heatmap showing regions of “interest” to the RESNET-18 model. (c) is the 
combination of the two images to show that banding region correctly led to classification 
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evaluated using the root mean square error (RMSE), for example, and if the error rate is low 
enough, the ML system can be applied to new data sets confidently. The advantage of ML 
systems is that they can often outperform classic techniques regarding computational 
speed, taking advantage of GPU architectures. The disadvantage is that the ML devised 
scheme inside the black box is hidden from the user. This means the user often doesn’t 
know what the ML is “seeing,” and unusual results are sometimes inexplicably produced. 
Explainable ML described in the Section 3.1.3 bridges the gap between these classical methods 
and ML methods. 

We used two different ML systems described in Table 3.2. The first, convolutional long short-
term memory (ConvLSTM), was tested with AOD measurements to determine if it could fill in 
the AOD gaps produced by clouds (Daniels et al., 2022). The second, the enhanced super-
resolution generative adversarial network (ESRGAN; Ledig et al., 2017; Wang et al., 2018), 
was used to produce higher-resolution AOD data sets so that lower-resolution ABI data could 
be compared to high-resolution VIIRS measurements. Table 3.2 provides definitions of the 
techniques and their analogous, classical equivalent. 

Table 3.2 Definitions of two ML models that can facilitate data fusion of satellite observations. 

ML Technique Definition Classic equivalent 

ConvLSTM 

Convolutional – long 
short-term memory 

This type of recurrent neural network for spatial-
temporal prediction has convolutional structures 
in both the input-to-state and state-to-state 
transitions. The ConvLSTM determines the future 
state using the inputs and past states and their 
local neighbors. 

Spatial/temporal back filling 
and inpainting 

ESRGAN 

Enhanced super-
resolution generative 
adversarial network 

ESRGAN is the enhanced version of the SRGAN. 
Starting with SRCNN, ESRGAN is a generative 
adversarial network for single-image super-
resolution. It uses a perceptual loss function, 
which consists of an adversarial loss and a 
content loss, to improve the image iteratively. 

Interpolation using higher 
order polynomials such as 
cubic spline. 

3.2.1 Gap filling with ConvLSTM 
ConvLSTM integrates structures in both spatial and temporal dimensions, making it ideal for 
sequence prediction in multi-dimensional data (Shi et al., 2015). Unlike pixel-to-pixel straight 
backfill or inpainting, ConvLSTM focuses on spatial structures. In theory, ConvLSTM can 
efficiently handle spatial-temporal data, capturing spatial hierarchies and temporal 
dependencies better than classical data fusion methods.  

When a sequence of images passes through ConvLSTM layers, filters compress the data by 
extracting important features from the pixel time series and their neighboring ones, thus 
retaining both the spatial and temporal characteristics. The ConvLSTM architecture has two 
network structures, which are the encoding network and the forecasting network, consisting 
of stacked with convLSTM layers (Figure 3.8). The encoding layer is composed of 
convolutional layers and LSTM cells, which compress the data into hidden layers and weigh 
features by their importance. The forecasting network copies the output state from the 
corresponding encoding layer and then decodes the hidden state to predict future values. 
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For our study, we used the “default” ConvLSTM encoder parameters for three layers, which 
had 64, 96, and 96 hidden states, respectively. We used a 5x5 filter on cells and a 3x3 
kernel on all layers (see convlstm_encoder_params and convlstm_decoder_params in 
https://github.com/jhhuang96/ConvLSTM-PyTorch/blob/master/net_params.py). 

To test the appropriate use of ConvLSTM, we evaluated its ability to predict AOD in a region 
where no data is available but previously available data. For example, imagine a fire-
generated smoke region with high AOD moving from west to east. In this scenario, an AOD 
anomaly is observed, and then the region is covered by clouds. Based on the structure of 
the AOD field, can we try to predict the air quality below the clouds.  

For our evaluation, we trained a ConvLSTM model using GOES-16 AOD. We had to construct 
a training dataset that reduced the full disk image (5424x5424 pixels) into small samples 
that were 64x64 pixels. Each smaller image consists of 12 timestep observations of AOD. 
We needed all the images to be nearly cloud-free, which was challenging given that the 
mean cloud fraction of the earth is 60% (King et al., 2013). Thus, building an extended 
training dataset was time-consuming. Using a year of data, we created 800 training samples 
(of 12 timesteps each) and validated/tested with 300 samples to refine the model. GOES-
16 AOD is generated every 10 minutes, and we initially used all available observations to 
train out data. However, scene-to-scene changes in AOD can be small, so the ConvLSTM 
predictions were unrealistic. Instead, we switched to 20-minute timesteps and saw more 
realistic propagation of AOD plumes. 

Figure 3.8  Network architecture for the ConvLSTM. The input layer is a 3D representation of a satellite 
dataset, e.g., an observation at location x, y, and time t. In the encoding network, each layer 
compresses the input to hidden states (ConvLSTM Layer 1) and hidden state to other hidden states 
(ConvLSTM Layer 2). In the forecast network, the previous hidden state (ConvLSTM Layer 1 and 2) is 
copied and decoded (ConvLSTM 3 and 4). Adapted from Shi et al. 2015. 

https://github.com/jhhuang96/ConvLSTM-PyTorch/blob/master/net_params.py
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Figure 3.9 shows an example of AOD prediction of ConvLSTM for a cloud-free scene. In a, we 
used two hours (six, twenty-minute timesteps) of 64x64 pixels to predict the next several 
timesteps, shown in b. Compared with c, the observed AOD for the next three timesteps, the 
predicted results do an excellent job capturing areas of higher AOD. The model can make 
predictions further in time, but the results were unrealistic. Given that we are applying the 
ConvLSTM model to fill in clouds, not predict AOD, it is more critical that the next time step 
(t+1) agrees with the observed values. 

We show how a ConvLSTM in the previous example can be used for gap filling in a digital 
twin in Figure 3.10. In , the GOES-16 ABI data is used to construct a time series and 
predict the current time (t+1) in . The observed values may contain clouds, sunglint, or 
another feature that reduces AOD retrieval quality, leading to missing values. We manually 
removed several clouds instead of using scenes with clouds so that we could evaluate the 
result. These missing pixels in the observed data can be filled with the predicted values. In 
 the combined image is compared with the actual scene for validation purposes. We could 
repeat this process to evaluate ConvLSTM offline, and if the results are favorable, the 
approach could be installed into the EO-DT.  

The ConvLSTM shows promise for gap filling. In our evaluation, we ignore advection and 
chemistry's effects on longer AOD time scales, so backfilling over a few hours can 
approximate the observations. However, incorporating other observations, such as GFS 
winds, will likely improve our results. Long-term validation is needed before incorporating 
into an EO-DT, which will likely require a multi-year training and test period using GOES AOD 
data. 

Figure 3.9 AOD prediction using ConvLSTM.  Training data is at the top row. Images of AOD are separated 
by hours. Starting with image 5, ConvLSTM predicts 6-11 (bottom row).  Validation is the middle row. 
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3.2.2 Enhancing image resolution using ESRGAN 
A higher-resolution data set often provides more insights into geophysical phenomena. 
However, the optics and detector signal-to-noise set the spatial resolution of most satellite 
data sets. GEO data sets often cannot match the kilometer-scale granularity needed for the 
location of fires or small pollution sources, limiting the potential of these data.  

One approach to overcome this limitation is using super-resolution techniques. Here we 
used a variant of SRCNN called ESRGAN (Wang, et al., 2018; Tsang, 2018). Figure 3.11 
illustrates how ESRGAN can be applied to the same retrieval algorithm (e.g. AOD) when 
available from two different sensors at different times and resolutions. The ESRGAN model 
can be trained using collocated AOD from NOAA-20 VIIRS, which has a higher spatial 
resolution but has lower temporal resolution, and the lower spatial resolution/high temporal 
resolution AOD products from GOES-16/18. Then, the model could be given a GOES image, 
which is then downscaled to the resolution of VIIRS, even if a VIIRS dataset is not present. 

 

Figure 3.10 Proof of concept for gap filling in an EO-DT. In 1, a convLSTM model predicts the next time step 
(t+1) using the past three-time steps of AOD (~1 hour of past data). In 2, the predicted AOD is compared 
with AOD observed at t+1, regions observed with simulated missing clouds can be replaced with the 
predicted values. Results can be validated using the unmodified t+1 observed values, where the clouds 
have not been removed. 

Figure 3.11 illustrates how 
super resolution uses a 
generative adversarial 
network (GAN) can be trained 
to increase the scale when 
there are two similar datasets 
with different resolutions. 
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ESRGAN employs deep learning to upscale and improve low-resolution images, leveraging 
the adversarial relationship between a generator (creates high-resolution images) and a 
discriminator (distinguishes between real and generated images). By iterating this process, 
the generator improves its outputs. Training the system produces a better resolution of 
coastlines and other geographical features and sharpens the gradients near the edges of 
the AOD distribution. Like any interpolation, ESRGAN is “creating data” and can occasionally 
produce unrealistic results. Another challenge is that ESRGAN requires extensive training 
datasets and GPUs to process the data. As a result, we used a pre-trained model to evaluate 
the off-the-shelf version and see if it was feasible for an EO-DT. 

 
Figure 3.12 shows an example of the pre-trained ESRGAN sharpened resolution of a sample 
GOES-16 AOD image. On the left (a and b), the GOES-16 AOD values are coarse when 
zooming into the focus region over Florida. The features are sharpened on the right-hand 
side (c and d) after processing with the ESRGAN model. The results show good visual 
agreement but need further validation with VIIRS AOD and AERONET before installing into 
the EO-DT. In the pre-trained model output, the pixel shapes take on a granular geometry, 
which may be controlled by developing a custom-trained model. Overall, ESRGAN shows 
promise for improving the spatial resolution of earth observations, especially for products 
available on different platforms.  

Figure 3.12 Example for GOES-16 AOD L2 Feb 23, 2023, 14:30 UTC using an off-
the-shelf pre-trained model that doubles the resolution. Grey pixels are missing 
values. (a) shows the zoomed out original GOES-16 AOD image and (b) zooms in on 
the finer details. (c) is the same as in a but processed using the SRGAN model. (d) 
shows the zoomed in view, where pixels are clearer.  
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A challenge of using this approach is that the ESRGAN will sharpen noise in the datasets. 
For example, coastal regions are an area of uncertainty in AOD models because of bright 
surfaces and a mixture of land and water scenes, which use different retrieval models. 
ESRGAN does not ensure thermodynamic consistency of AI/ML based and traditional based 
methods to understand the quality. Thus, it’s important to vigorously validate datasets using 
in situ and high-quality model data to understand and apply quality control to the image, 
otherwise ESRGAN will enhance the underlying noise. In the future, a large, multi-year 
training dataset of collocated VIIRS and ABI would allow us to train a custom ESRGAN model 
specifically for Earth Science data. 
3.2.3 Summary 
Our results suggested that ML systems have the potential to produce excellent data-fused 
products, but the approach must be nuanced. Users cannot just submit training data to an 
ML package and expect good results. Understanding the physics behind the data is 
required, and the ML package may need to be trained using multiple variables. In our 
example, AOD predictions in regions where data gaps occur require some knowledge of the 
processes that change AOD, such as pollution sources, winds, and chemistry.  

The unique characteristics of ABI data meant that our ML models were continually at risk of 
overfitting to specific patterns. This could potentially jeopardize their effectiveness when 
introduced to new, unseen data. Another concern revolved around the need for additional 
training data. While ConvLSTM shows promise in filling data gaps, it is evident that 
supplementary training datasets are essential for generating satisfactory outcomes. The 
foundation for selecting this additional training data should be rooted in a comprehensive 
understanding of the processes under simulation. 

Additionally, despite the remarkable capabilities of ML techniques, ML models tend to 
produce artifacts. These anomalies can misrepresent or distort the data. To address this, 
rigorous testing of the methods is imperative. Moreover, a post-simulation review of 
datasets generated by ML can identify and rectify most of these discrepancies. 

Synergistic utilization of both classic and ML techniques will provide superior data fusion. 
While classical techniques like backfilling or polynomial resampling provides a simplified 
approach to changes in resolution and data gaps, ML can provide superior results under the 
right circumstances. That said, ML techniques cannot be applied haphazardly and must be 
thoroughly tested before implementation. 
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4 Optimizing Data for Interoperability 
In this chapter, we explore why knowledge graphs and cloud-optimized data are essential for 
data exploitation because these enhancements can improve data discoverability and 
usability. Knowledge graphs can semantically represent relationships between phenomena 
in the Earth Sciences, such as linking datasets with certain types of weather phenomena. 
Knowledge graphs can also connect standard processes performed on data, such as 
regridding and gap filling. This structured representation could also form the basis for an 
integrated digital twin system. Cloud storage ensures accessibility and scalability of data, 
making it more efficient to disseminate and use datasets. The two enhancements are 
interlinked because knowledge graphs can link different twins, and the cloud-optimized 
formats can facilitate data exchange. 

4.1 Metadata and Knowledge Graphs 
Much focus is made on the usage and formats of data in a digital twin. However, each file 
generates additional data describing the data, which is coined metadata. Most people are 
familiar with metadata, thanks to public libraries. A person can find a specific book in the 
library because it has properties like a title, author, and publication year. It is also possible 
to browse books in a library because they are organized by genre. Each book is given a main 
class and then further divided into subclasses. For example, under the Dewey Decimal 
System, 500 is for Natural Science and Mathematics, and 520 is for Astronomy. 

 

Figure 4.1 Illustration of knowledge 
graph connecting NOAA satellite 
assets (“NOAA-20”), their properties 
(“global”), and the relationships 
between them (“hasDomain”). 
Knowledge graphs can improve the 
searchability and discovery of 
datasets as well as link to other 
databases to create a larger, 
interconnected federation. 
Consistent metadata formats are a 
key requirement for success. 
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Much like a library, it is important for users to find a specific dataset and discover similar 
and related datasets. This is where models like knowledge graphs can connect relationships 
between datasets using metadata (Figure 4.1). Knowledge graphs describe the relationship 
between objects following a subject-object-verb format. For example, VIIRS could be mapped 
by (VIIRS, is_a, imager). While this example is simplistic, we could use knowledge graphs 
to link concepts like sensors to high-level data products, like AOD, and then link to natural 
hazards (wildfires). This can help users interested in natural hazards access a catalog of 
data. 

Metadata is key to digital twin semantic interoperability because there is no centralized 
warehouse for all Earth observations. Instead, major data providers - NOAA, NASA, ESA, 
ECMWF, and CNES - all have their large data warehouse stores. These stores must operate 
as a data mesh to leverage all these data sources. Data meshes treat data as a product and 
distribute ownership and responsibility across multiple domain-specific teams. Returning to 
our library example, a data mesh would be the equivalent of having access to another 
library’s book through an interlibrary loan. The NSF and other international organizations 
have championed open knowledge, which they have coined the knowledge commons 
(McGranaghan et al., 2023). 

Libraries successfully share their book collections because they have a common framework 
to catalog their items, such as the Dewey Decimal system. The earth science community is 
working towards establishing a universal metadata format and access method across all 
organizations. A common metadata framework and robust API can enable a better 
“handshake” and data exchange between digital twins.  

 
One popular catalog model for geospatial data is STAC. In STAC, specifications are intended 
to make data more searchable. The core catalog fields included properties like the bounding 
box and the datetime of the scan, identifiers like constellation and platform, and other 

Figure 4.2 Example of a data catalog for fire weather on WIFIRE commons (https://wifire.ucsd.edu/). Users 
can browse nearly 3,000 datasets  
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information on loading and processing the data. However, data providers can add hundreds 
of additional metadata fields using an Asset Object. The Asset Object could be where 
NESDIS adds additional data product tags, such as the thematic area, associated hazard, 
and even models that can process the data. For example, VIIRS and ABI AOD could be 
associated with atmospheric composition (thematic area), air quality (hazard) and wildfires 
(hazard), and the HYSPLIT trajectory model (simulation). Then, AOD could be linked to online 
catalogs of wildfire events to extract dates, geolocations, and even economic costs. Figure 
4.2 shows a real-world example of a knowledge graph-enhanced data catalog, the WIFIRE 
commons (https://wifire.ucsd.edu/). Users can search by datasets or variables; their 
ultimate selection will provide a list of all available products, their sources, and how to 
access them.  

 
In addition to linking the datasets, knowledge graphs can be used to connect data 
workflows, such as extractions, transformations, gap filling, and resolution enhancement 
(Berkheimer et al., 2023). Figure 4.3 shows an example where a researcher examines 
monthly mean SST using a combination of GOES, Meteosat, and Himawari satellites and 
regrid to a 1˚ cartesian grid. Data could be extracted from a catalog, transformed into a new 
grid, and aggregated into a monthly mean. The researcher can also save the resulting data 
in their format of choice, GeoTiff. 

 

Figure 4.3 Simplified illustration of how knowledge graphs can map actions performed on datasets. This 
can create greater transparency for NOAA open science goals and better error and uncertainty tracking 
within processes. 

https://wifire.ucsd.edu/
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If applied to our EO-DT, knowledge graphs can improve data discoverability. Searching by 
data product requires users to know the data exists and identify a specific use care they are 
interested in. With knowledge graphs, a user could start with the event they are interested in 
and find the relevant data products without prior knowledge of what those products are.  

In our EO-DT prototype, users were allowed to regrid their data to a standard grid for data 
fusion. With knowledge graphs, users could create workflows using predefined 
transformations. Using the STC EO-DT as an example, a user could request data that is 
easily compared with the GFS model on a regularly spaced grid. The EO-DT could use 
ontology to chain processes, such as regridding to a 1x1 grid and perform gap filling and 
combine the result with GFS. The user would see the final product without having to 
understand and code the full complexity of the data transformations. 

The concept of data workflows is an ongoing area of interest in the Earth Sciences. For 
example, Kepler (https://kepler-project.org/index.html) is a software tool that provides a GUI 
for scientists to chain containerized processes with limited coding. Keppler has been used to 
build a successful workflow for fire weather (Nguyen et al., 2017). While open source, a 
drawback is that the software was developed for the pre-cloud era and would not be viable 
in a digital twin. One major goal of NASA AIST is the development of the Analytics 
Collaborative Framework (ACF) to permit scientists to harmonize data management and 
perform analysis. This framework was successfully deployed for an air quality focused ACF 
(Huang et al., 2022). The project provides a one-stop sandbox for scientists to study air 
quality, with access to relevant datasets from satellites, models, and in situ. Scientists can 
use AWS SageMaker to run ML and popular models like GEOS-Chem. At the time of writing, 
the ACF can build workflows but only supports data transformations and does not appear to 
incorporate knowledge graphs to improve data or process searchability. 

The most fully realized example of using knowledge graphs for EO-DT-like goals was by 
Shimizu et al., 2023 via a space weather use case. The authors developed an ontological 
framework that links Solar Flare events to power grid disturbances. They developed a model 
that initiated a workflow if a Solar Flare Event was detected, which would respond by pulling 
together NOAA, SWPC, and GOES satellite observations, use that data to run a model to 
estimate ionospheric currents and simulate the geomagnetic field of the earth and the 
resulting induced currents. Their study did not combine and run simulations but defined how 
a theoretical workflow could be labeled. 

Shimuza et al., 2023 developed their ontology though the following questions (1) What 
datasets are available to view? (2) What does dataset X contain? (3) In what ways is dataset 
X used? (4) What is the result of dataset X transformed by Algorithm A? (5) What dataset X 
was used for input to Simulation S? Satellite, in situ, and model data, as well as algorithms 
and models, can be better connected by working with science teams to label their resources 
better and incorporate that into the existing catalogs. 

When people think of interoperable digital twins, they may naively assume that the 
exchange only occurs on a data level. Data exchange between providers like NOAA and 
NASA is invaluable, but to truly support interoperability, processes also must be exchanged. 
A genuinely interoperable digital twin should be able to pass data from a NASA digital twin, 
preprocess the data on a NOAA digital twin, and process it using an EUMETSAT forecast 
model. This is a challenging software problem, but the importance of cataloging data and 
processes cannot be overlooked. 

https://kepler-project.org/index.html
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4.2 Cloud Optimized Data Formats 
Digital twin data access must meet the needs of two major end users: (1) data providers 
who must archive, maintain, and disseminate vast amounts of data, and (2) the scientific 
community, who need to access the data in a consistent and analysis-ready format to ingest 
the data into models and simulations. The first community requires compression, stability, 
and reduced computing costs; the latter requires timeliness, findability, and ease-of-use in 
their software ecosystem. System architecture requirements sometimes clash with the 
community's needs, as data would be costly to store in multiple formats or in every 
conceivable option. 

The two formats that serve the data archive community are the netCDF4 and HDF5 formats. 
HDF was developed in the 1980s as a cross-platform data format to address big data 
challenges in the scientific community (Folk, 2010). NetCDF (Network Common Data Form) is 
a set of libraries that can read multiple binary formats, including the netCDF4 format, which 
builds on HDF5 but with additional data requirements. Presently, netCDF4 is one of several 
international standard formats of the Open Geospatial Consortium. 

Other formats, such as GRIB and BUFR, address big data challenges and were adopted by 
the WMO for modeling purposes (Caron, 2011). These formats are less common in newer 
satellite data products because, among other reasons, they require local tables to read the 
contents and thus are not entirely self-contained as netCDF4. Additionally, these formats are 
more rigidly organized, which is challenging for Level 2 and higher data products. 

NetCDF4 files provide excellent compression, readers/writers are readily available, and 
most data is stored in these formats. While these formats are well-understood by more 
advanced users, they are not cloud-optimized.  

Under previous data access paradigms, users would search and download the data using 
data portals, such as NASA’s Earthdata and NOAA CLASS. The NOAA NODD program allows 
users to access, analyze, and utilize large datasets directly in the cloud without local 
downloads. This approach enhances the user experience, ensuring rapid data access, 
seamless integration with analytical tools, and efficient data manipulation in a cloud-based 
environment. By shifting towards this cloud-centric model, data archive communities and 
researchers benefit from the streamlined process, minimizing the challenges traditional 
data access methods pose. 

What makes a data format “cloud-optimized?” For one, cloud-optimized data is designed to 
be processed across multiple nodes. The STC EO-DT explores this using serverless 
technology, which enables handling of multiple search queries and user data fusion 
requests. Under the current paradigms, NetCDF4 metadata is not centrally located in the 
file. As a result, users can download the entire file, even if only a single field is needed 
(Ambatipudi and Byna, 2023). 

Cloud-optimized data keeps metadata in a central location so the user can download just a 
chunk of the data (e.g., only GFS u/v vectors, not the entire 20 GB GFS file). It is more 
challenging to search and subset when metadata and variables are scattered across the file. 

Chunking is a technique that divides large datasets into smaller, more manageable pieces 
called "chunks." Optimizing chunk sizes is crucial for cloud-based data processing and 
storage because retrieving many small files concurrently is often faster than one large file 
sequentially in a cloud system. With cloud storage solutions like Amazon S3, you pay for the 

https://www.hdfgroup.org/about-us/
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storage space and the number of read/write requests. Chunking can reduce the number of 
requests by ensuring that only the necessary chunks are accessed. The benefit to the end 
user is that they have less data to transfer. 

Table 4.1 summarizes some of the popular cloud optimized formats and file system 
solutions. Zarr is a format for storing chunked, compressed, N-dimensional arrays. These 
characteristics make Zarr especially suitable for scenarios where data are frequently 
accessed non-contiguously, such as in cloud-based storage systems. Zarr divides arrays into 
equally sized chunks, which can be read or written independently. This is particularly 
beneficial for parallel and distributed computing. Zarr also stores metadata related to the 
array, including information about its shape, data type, and chunks. This metadata is stored 
in a human-readable format, typically JSON. As a result, end users who use the cloud 
increasingly request that data providers like NOAA provide their data in Zarr (Abernathey et 
al., 2018). 

Table 4.1 Comparison of cloud-optimized approaches and data formats 

 

However, adopting Zarr in the Earth sciences presents its own set of challenges. As 
evidenced by the AWS registry of Open Data, out of 479 datasets, only 11 are in Zarr, 
whereas 20 are formatted in netCDF (20), HDF (6), or GRIB2 (7). This preference for 
traditional legacy formats highlights that it would be costly to reformat archives to Zarr. 
Instead, modifying filesystems like NetCDF4 to incorporate the principles underlying Zarr 
may be more pragmatic. Fortunately, existing libraries, such as Kerchunk, allow the creation 
of virtual Zarr datasets (Sterzinger, 2023). The performance trade-off of this approach is 
typically minimal. As illustrated in Figure 4.4, while Zarr processing times were only slightly 
faster for single file processes, they were notably quicker — up to twice as fast — for multifile 
processes (Augspurher, 2022). 

Another popular format, HDF, similarly upgraded the HDF5 library to be cloud-optimized 
(Jelenak, 2023). One hurdle for HDF is that the default chunk size is 1MB, whereas AWS 
best practices recommend 8-16 MB chunk sizes. Like netCDF, metadata are spread 

Solution Strengths Weaknesses 
“Retrofit” NetCDF4 

Kerchunk 

NCZarr 

Uses existing computing 
standard 

NCZarr stores are not fully compatible and 
interoperable with Zarr V2, might be addressed 
in Zarr V3. 

Slower access than using Zarr 

Zarr Cloud optimized  

Supports data filters 

OGC endorsed on 6/30/2022 

Must re-process processing/duplicating the 
original data 

Introducing new format to community 

GeoTiff (Cloud-
Optimized) 

Community Standard 

Cloud Optimized 

Too simple for multi-dimensional/complex data 
datasets 

Parquet, ORC, other 
database formats 

Cloud and ML optimized Works best for tabulated data formats 
(However, GeoParquet beta available as of Dec 
2022) 
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throughout the file. The metadata can be consolidated in paged aggregation, combining all 
the metadata on a single “page” in the file. Unfortunately, this solution requires the entire 
archive to be reprocessed. 

 
GeoTIFF, Parquet, and ORC are all file formats designed or adapted with specific 
optimizations that make them well-suited for cloud-based applications. GeoTIFFs can be 
made into cloud-optimized GeoTIFFs (COG) by organizing the file's internal structure to 
enhance the efficiency of partial reads. While COGs are great for imagery, they might not 
always be ideal for other types of multidimensional remote sensing datasets that may have 
multiple variables and time steps. Parquet and ORC are both cloud-optimized and primarily 
designed for tabular data. Earth science datasets often consist of multi-dimensional arrays, 
which do not map naturally to Parquet's columnar format. 

In summary, while newer formats have cloud-specific advantages, legacy formats like 
netCDF and HDF remain deeply entrenched in the community's practices and toolchains. 
Both Unidata and the HDF group, which manage the two filesystems, are actively studying 
and implementing solutions to libraries for these formats to reinforce their resilience and 
adaptability as systems evolve to the cloud. Considering this, it is pragmatic for institutions 
like NOAA and NASA to continue leveraging these formats. Transitioning to a new format 
would not only entail considerable resources for converting large archives but may also 
introduce complexities and unforeseen challenges in the community. Staying the course 
with netCDF and HDF ensures stability, continuity, and the ability to benefit from ongoing 
innovations in their ecosystems. 

4.3 References 
Abernathey, R. P., Hamman, J., & Miles, A. (2018). Beyond netCDF: Cloud Native Climate Data with Zarr and 
XArray, 2018, IN33A-06. Presented at the AGU Fall Meeting Abstracts. 

Ambatipudi, S., & Byna, S. (2023, February 5). A Comparison of HDF5, Zarr, and netCDF4 in Performing 
Common I/O Operations. arXiv. Retrieved from http://arxiv.org/abs/2207.09503 

Augspurger, T. (2022, January 12). Recommendation for hosting cloud-optimized data - Data. Retrieved 
October 30, 2023, from https://discourse.pangeo.io/t/recommendation-for-hosting-cloud-optimized-
data/2063 

Figure 4.4 Benchmark tests for the NASA CMI6 dataset comparing processing speeds of 
accessing (1) a Zarr Archive and (2) NetCDF4 archive using a Zarr-like file system 
(Kerchunk) [Image credited to Augspurger, 2022] 

http://arxiv.org/abs/2207.09503
https://discourse.pangeo.io/t/recommendation-for-hosting-cloud-optimized-data/2063
https://discourse.pangeo.io/t/recommendation-for-hosting-cloud-optimized-data/2063


Science and Technology Corp. Nov 30, 2023 68 

Berkheimer, R. (2023, April). NOAA Steps to the Geoverse: Shaping the Next Generation of Earth Systems 
Compute. Presented at the Committee on Earth Observation Satellites, Cordoba, Argentina. Retrieved from 
https://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-
55/1/2023.04.18_15.10_NOAA%20Steps%20to%20the%20Geoverse.pdf 

Caron, J. (2011, April 25). On the suitability of BUFR and GRIB for archiving data. Retrieved October 30, 2023, 
from https://www.unidata.ucar.edu/blogs/developer/en//entry/on_the_suitability_of_grib 

Folk, Mike (2010). About Us. Retrieved October 30, 2023, from https://www.hdfgroup.org/about-us/ 

Huang, T., Chung, N., Dunn, A., Hovland, E., Kang, J., Loubrieu, T., et al. (2022). An Advanced Open-Source 
Platform for Air Quality Analysis, Visualization, and Prediction. In IGARSS 2022 - 2022 IEEE International 
Geoscience and Remote Sensing Symposium (pp. 6574–6577). 
https://doi.org/10.1109/IGARSS46834.2022.9883227 

Jelenak, Aleksandar (2023). Cloud-Optimized HDF5 Files, The HDF Group #HUG23. Retrieved from 
https://www.youtube.com/watch?v=bDH59YTXpkc 

McGranaghan, R., Klein, S., Cameron, A., Young, E., Schonfeld, S., Higginson, A., et al. (2021). The need for a 
Space Data Knowledge Commons. Structuring Collective Knowledge. Retrieved from 
https://knowledgestructure.pubpub.org/pub/space-knowledge-commons/release/4 

Nguyen, M. H., Crawl, D., Li, J., Uys, D., & Altintas, I. (2017). Automated scalable detection of location-specific 
Santa Ana conditions from weather data using unsupervised learning. In 2017 IEEE International Conference 
on Big Data (Big Data) (pp. 1203–1212). https://doi.org/10.1109/BigData.2017.8258046 

Shimizu, C., McGranaghan, R., Eberhart, A., & Kellerman, A. C. (2020, September 28). Towards a Modular 
Ontology for Space Weather Research. arXiv. https://doi.org/10.48550/arXiv.2009.12285 

Sterzinger, L. (2023, October 25). Fake it until you make it — Reading GOES NetCDF4 data on AWS S3 as Zarr 
for rapid data access. Retrieved October 30, 2023, from https://medium.com/pangeo/fake-it-until-you-make-
it-reading-goes-netcdf4-data-on-aws-s3-as-zarr-for-rapid-data-access-61e33f8fe685 

 

 

 

 

 

 

 

https://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-55/1/2023.04.18_15.10_NOAA%20Steps%20to%20the%20Geoverse.pdf
https://ceos.org/document_management/Working_Groups/WGISS/Meetings/WGISS-55/1/2023.04.18_15.10_NOAA%20Steps%20to%20the%20Geoverse.pdf
https://www.unidata.ucar.edu/blogs/developer/en/entry/on_the_suitability_of_grib
https://www.hdfgroup.org/about-us/
https://doi.org/10.1109/IGARSS46834.2022.9883227
https://www.youtube.com/watch?v=bDH59YTXpkc
https://knowledgestructure.pubpub.org/pub/space-knowledge-commons/release/4
https://doi.org/10.1109/BigData.2017.8258046
https://doi.org/10.48550/arXiv.2009.12285
https://medium.com/pangeo/fake-it-until-you-make-it-reading-goes-netcdf4-data-on-aws-s3-as-zarr-for-rapid-data-access-61e33f8fe685
https://medium.com/pangeo/fake-it-until-you-make-it-reading-goes-netcdf4-data-on-aws-s3-as-zarr-for-rapid-data-access-61e33f8fe685


Science and Technology Corp. Nov 30, 2023 69 

 

5 Transitioning the Prototype to an 
Operational System 

The STC EO-DT prototype was a foundation for evaluating the technologies and services for 
building a digital twin. NESDIS’s goal for the prototype EO-DT was to “enhance our ability to 
process, monitor, quality-control, consolidate, fuse, and assimilate environmental 
observations.” NESDIS’s prototype goals are operationally focused and closely aligned with 
NESDIS' mission, which is to provide secure and timely access to global environmental data 
and information from satellites. Following our assessment, an operational EO-DT can meet 
these goals and become a basis for a more extensive Earth system digital twin, especially if 
combined with other digital twin efforts. 

In this section, we discuss how to scale up our prototype infrastructure, identify essential 
milestones for interoperability, and provide an estimate of the cost. Per the report disclaimer 
(page 4), NOAA is not planning for activity beyond the demonstration projects. This section is 
written for informational purposes only. 

5.1 Operational Architecture 
Figure 5.1 shows the architecture diagram of our EO-DT when scaled from a prototype for 
demonstration to operations. The architecture diagram incorporates many of the same on-
demand processes used in the prototype diagram (Figure 2.1). A fundamental change is that 
we replaced our EC2 with containerization to improve scalability. In the top right corner of 
the diagram, you can see that the regridding and the anomaly detection are stored as 
images in the Elastic Container Registry, which is run using AWS Fargate and Batch. AWS 
Batch dynamically provisions an optimal quantity and type of computing resource for 
containers based on the requirements of the submitted job. The container runs on Fargate, 
which handles the provisioning and managing of servers. This combination is more 
straightforward than Kubernetes because you will not need to choose server types, decide 
when to scale your clusters, and optimize cluster packing. AWS step functions are used to 
manage which batch workflow is run. For example, if a new SNS indicates a new GOES-16 
file is available, the AWS step function would run the anomaly detection container using 
batch and Fargate. If the user ordered a regridded data file, the regridding container would 
run and save the output file to the S3.  

A benefit of this approach is that it can be expanded to incorporate any number of 
processes so long as they can be stored in a container. For example, a scientist can quickly 
write code to combine multiple files and save it on a container. A developer could then easily 
update the step function and batch for this new process, and Fargate would automatically 
manage and provision the resources in the EO-DT. 

The alternative to using a serverless combination of Batch and Fargate is a self-managed 
service like Elastic Kubernetes Service (EKS). EKS is more cost-effective and could be used 
with AWS Stepwise, but it would require manually provisioning compute resources. The 
serverless approach would allow science teams to manage their operational deployments, 
whereas using Kubernetes would require an engineer to oversee the deployment process. 
So, we recommend the serverless approach if it is within an organization's budget. 
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We recommend adding a Web Application Firewall (WAF) to Cloud Front and API Gateway for 
additional security. WAFs can filter which users can access the digital twin and block or limit 
access if a user uses the system excessively. In addition to blocking threats, the firewall can 
help reduce costs. 

Finally, we added Grafana to the operational system. The Grafana dashboard requires an 
EC2 instance to run (m6g.4xlarge) and can be accessed by NOAA management using a 
public IP address. For added security, we recommend putting the EC2 behind an Application 
Load Balancer, which can have WAF rules applied to it. The added benefit of fully 
modularizing our system is that it improves transparency. In the prototype, we wrote python 
scripts to provide custom monitoring, but in the operational system, these requests can be 
monitored by CloudFront. If additional custom scripts are needed, they can be containerized 
and added as a stepwise function to execute. 

5.2 Interoperability with External Digital Twins 
A major concern of the community is how to leverage the numerous earth science digital 
twin efforts worldwide and open them to the scientific community. NASA, ESA, and 
EUMETSAT are building digital twins with different goals and unique approaches. The 
capabilities of individual digital twin efforts can be improved by seamlessly exchanging data 
and information with other digital twins, a process known as interoperability. Opening the 
interoperable, federated digital twins to external users benefits the scientific community by 
improving the findability, accessibility, interoperability, and reuse of digital assets (GO FAIR, 
2016) and can deliver Analysis-Ready Data (ARD; Dwyer et al., 2018).  

Figure 5.1 The architecture diagram for a fully operational version of the EO-DT in this project. 
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Interoperability between digital twins involves adopting standards, data formats, and 
protocols. While there are numerous ways a system can achieve interoperability, some 
major ones identified during discussion sessions at the 4th NOAA AI Workshop 
(https://www.noaa.gov/ai/events/4th-noaa-ai-workshop-2022 ) include syntactic 
interoperability, which is the ability to communicate and exchange data through a standard 
data format and communication protocols. Structural interoperability refers to the different 
information technology systems and software applications that exchange, interpret, and 
present data in an understandable and usable way by the recipient system or application. 
Semantic interoperability is the ability to transfer and interpret meaningful information 
between digital twins to build knowledge. Other types of interoperability (for example, legal) 
are also essential and need to be part of the ongoing discussion, but specific actions to 
address them become more relevant as digital twins reach higher maturity levels. 

5.2.1 Major Digital Twin Efforts 
There is an explosion of investment in digital twin research in the earth sciences. Here, we 
summarize some of the larger efforts, their goals, and their approach. Destination Earth 
(DestinE, https://destination-earth.eu) is building a digital twin of the Earth, “a highly 
accurate digital model of the Earth to model, monitor and simulate natural phenomena, 
hazards and the related human activities.” DestinE is taking a top-down approach, as in they 
are planning the complete system from the start and building components. For example, 
DestinE is investing in building the core platform, infrastructure, and functions. Another 
European effort, the Digital Twins of the Ocean (DITTO, https://ditto-oceandecade.org), 
seeks to “enable users to address “what if” questions based on shared and relevant data, 
models, and knowledge” (Bahurel et al., 2023). Like NESDIS’ approach, DITTO aims to 
advance specific use case prototypes within the first two years. 

NASA’s Advanced Information Systems Technology (AIST, https://esto.nasa.gov/earth-
system-digital-twin) program’s Earth System Digital Twin to “integrating diverse Earth and 
human activity models, continuous observations, and information system capabilities to 
provide unified, comprehensive representations and predictions that can be utilized for 
monitoring as well as for developing actionable information and supporting decision 
making.” DestinE and NASA seek to integrate climate and human activity models and are 
primarily (but not exclusively) focused on research goals. NASA is adopting a bottom-up 
approach to its ESDT by investing in relevant technologies along thematic lines and building 
up its capabilities over time (Le Moigne, 2022; Le Moigne and Smith, 2022). While the 
differences are subtle, all efforts require close coordination; otherwise, their development 
trajectories may eventually diverge. 

Despite these differences, these efforts have significant potential to share resources, 
particularly those looking to develop from the bottom up. For example, models and 
processes used by the EO-DT for data fusion and EO-DT data can be incorporated into the 
ESDT to make socioeconomic predictions. Interoperability in digital twins is an achievable 
goal. Digital twins are essentially software platforms, and software frequently integrates with 
other software. Most importantly, there is consensus in the community around 
interoperability and ample opportunities to collaborate. 

By attending conferences, workshops, and meetings with leaders in the digital twin 
community, we make the following recommendations to encourage interoperability if 
NESDIS chooses to build an operational EO-DT. We recommend funding an integration effort 

https://ditto-oceandecade.org/


Science and Technology Corp. Nov 30, 2023 72 

with another digital twin at a similar maturity level (point-to-point integrations). As major top-
down digital twin projects mature, a “middleware” solution may establish the standards for 
other digital twins to follow. DestinE’s core platform or NASA’s IDEAS framework are viable 
candidates once they reach a higher maturity level. However, a focused twin-to-twin effort 
can provide early lessons learned for future, larger efforts. 

Like our project, we recommend starting small, such as developing APIs to exchange data 
between digital twins. Then, we recommend building up processes and developing the 
ontological interoperability framework. 

5.2.2 Connecting with a Sibling Digital Twin 
Our recommendations assume that NOAA builds an operational system based on or like our 
recommendations in Section 5.1. While building the operational EO-DT, we recommend that 
NESDIS identify a partner digital twin effort to work towards interoperability actively. Several 
ESDT-related projects are mature or will be completed within a few years. Below are some 
existing candidate projects that NESDIS could closely work with: 

• The CNES’ FloodDAM-DT project 
(https://www.spaceclimateobservatory.org/flooddam-dt) plans to have an end-to-end 
demonstration by June 2024. FloodDAM is an automated service to detect, monitor, 
and assess global flood events using ML and computational fluid dynamics. The 
team has partnered with JPL to use their IDEAS (Integrated Digital Earth Analysis 
System) platform and has reported successful data and process transfer (Huang et 
al., 2022; Huang et al, 2023). 

• Pixels for Public Health (https://pixels-for-public-health-digital-twin-odu-
gis.hub.arcgis.com/) project focuses on predicting coastal hazards and human health 
in Hampton Roads area in Virginia, USA. Their recent work successfully merges 
various measurements from satellites, models, and in-situ observations. The team 
has an open data portal and several available geospatial models (Allen et al., 2023). 

• The European Commission’s Horizon 2020 Research and Innovation program effort 
funds Project Iliad (https://www.ocean-twin.eu/digital-twins). Project Iliad has a 
mature information model for their ocean digital twin (Palma, 2023). 

The partnership is intended to understand the technology needed to achieve interoperability 
rapidly; it is less important that the sibling effort meet a critical NESDIS use case or need. 
The most fruitful partnership will be with a group actively building a prototype or a mature 
end-to-end system for a use case. Then, the two groups can focus on building an ecosystem 
of tools that leverage both investments. DestinE may have partnership opportunities, but 
according to their project timeline (DestinE, 2023), they plan to incorporate other digital 
twins around 2027. 

5.2.3 Recommended Steps for Interoperability 
After identifying a sibling digital twin partnership, we recommend that the two efforts make 
small but necessary steps toward interoperability. Their efforts can be a focal point of digital 
twin community conversation and a path for developing the architecture, data formats, 
software tools, and methodologies for interoperability between other digital twins. 

If an operational EO-DT is built, we recommend the following “action items” to kick-start the 
process of interoperability (Figure 5.2): 

1. Exchange data between the EO-DT and the sibling DT 

https://www.spaceclimateobservatory.org/flooddam-dt
https://pixels-for-public-health-digital-twin-odu-gis.hub.arcgis.com/
https://pixels-for-public-health-digital-twin-odu-gis.hub.arcgis.com/
https://www.ocean-twin.eu/digital-twins
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2. Run processes between the EO-DT and the sibling DT 
3. Run models between EO-DT and the sibling DT 

We recommend that these processes be fully automated, as in, there is no help from a 
human computer operator. 

 
As a first milestone, we recommend NESDIS begin by establishing data exchange with their 
sibling digital twin effort. To do so, the EO-DT and sibling DT would need to jointly develop 
APIs to search for specific data and download it into the other digital twin’s system. The STC 
EO-DT already has an API interface that can serve as the starting point for the exchange. In 
addition to developing the infrastructure to query and download the data, the two groups 
can begin to develop an ontological system and identify necessary metadata. These early 
conversations can help pave the way for a future knowledge graph. 

A second milestone is the exchange of processes. We recommend that an operational EO-DT 
have a function catalog to complete this milestone. The function catalog would consist of 
containerized code with common data transformations, starting with data fusion operations 
(e.g., various regridding schemes, ML-based gap filling, and data combination). These 
processes can be extended to encompass processes that prepare data for assimilation, 
analysis, and decision support. If successful, the sibling DT effort should be able to 
download processed data to prepare the data for ingestion into the other digital twin’s 
system and vice versa. The key to success in this second milestone is (1) early identification 
of the sibling efforts’ processing needs and (2) a high degree of containerization of 
processes in the EO-DT. Our proposed operational EO-DT cloud diagram in Figure 5.1 
explicitly containerizes data fusion processes to be easily updated. 

A third milestone is running models on another digital twin. Running models is more 
challenging than running a single process because more elements are involved, including 
data exchange and additional processing. For example, let us suppose the sibling digital 
twin has a microwave sounder that MIIDAPS-AI could use to predict the 850 hPa air 
temperature. A successful exchange would allow the sibling DT to send its data to the EO-DT, 
process it with MIIDAPS-AI, and return the result. Another example would be for the EO-DT to 

Figure 5.2 Three milestones to better understand structural, syntactic, and semantic interoperability 
between digital twins. After partnering with a sibling effort, we recommend that NESDIS work toward 
exchanging data, processes, and models. 
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send NESDIS data to the sibling EO-DT, have the data assimilated into their prediction 
model, and download the result. 

Milestones 2 and 3 are also points for collaboration with AIST’s ESDT effort. Several PIs 
funded from 2021-2023 are developing useful processes and models that could be 
incorporated into the EO-DT. For example, AIST invested in updating the GEOS Composition 
Forecast system (GEOS-CF) for real-time use in a digital twin (PI Keller). AIST also funded a 
project to harmonize data from heterogeneous sources for deep learning from multi-sensor, 
multi-temporal data (PI Prasad). The EO-DT could also try to utilize one of the visualization 
tools, such as the NASA open-source extended reality (PI Grubb). We also recommend 
further investment in ML-based simulations in the EO-DT, which can help ensure that 
NESDIS data can be exchanged with an ever-growing number of ML-based models. 

Much like the prototype, connecting with a sibling effort is intended to be a pathfinder 
exercise to evaluate the technology and methods needed to make digital twins 
interoperable. Given the number of digital twin projects, we foresee a high likelihood of 
success in leveraging these many projects. Interoperability will benefit the user community, 
improve data exploitation, and ultimately enhance the value of Earth system digital twins. 

5.3 Cost Estimates 
One of the challenges of developing cloud systems is that the costs vary depending on the 
system usage. Cost calculators are invaluable tools designed to provide users with an 
estimated expense for cloud services based on their projected usage patterns. These 
calculators, such as the AWS Pricing Calculator, consider several parameters: the type and 
number of resources (like EC2 instances or Lambda functions), expected data transfer and 
storage (for services like S3), number of requests (pertinent for services like API Gateway), 
and more. Customers receive a detailed breakdown of potential costs by inputting these 
parameters, allowing them to budget effectively. For the services mentioned, costs can vary. 
EC2 charges are typically based on the type and duration of instances run, while Lambda 
incurs costs for each execution and the compute time consumed. DynamoDB's pricing 
considers the amount of read and write capacity units, and S3 costs are contingent on the 
amount of stored data and requests made. API Gateway generally bills users for the number 
of API calls made and the amount of data transferred, while CloudFront's pricing considers 
data transfer and requests, factoring in the geographic region. Utilizing cost calculators 
helps understand these nuances, enabling businesses to make informed decisions about 
scaling and optimizing their cloud infrastructure. 

5.3.1 Prototype EO-DT 
For our demonstration, we built and tested our EO-DT prototype for up to two simultaneous 
users, 100 user requests per month, and 1 GB per user request. Figure 5.3 shows a time 
series of the STC’s EO-DT prototype monthly costs for the US East-2 (Ohio) region. This time 
series illustrates that the most cost-intensive resources are “always on,” such as EC2. 
However, the costs are much more predictable, as our EC2 instances were consistently 
$500 a month and another $400 for additional storage. On the other hand, Lambda was a 
much smaller fraction of our costs even when invoked thousands of times a month, between 
$10-$100. Because of our data-in-place model, we did not need to duplicate the NODD onto 
our system, and our S3 costs were relatively low ($50-$70/month). 
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We had two EC2 c5.2xlarge instances with 8 vCPUs and 16GB of memory. The cost for a 
Linux system is $0.36 per hour. One of our EC2s was the development environment and 
shared by the team for R&D, and the other was the production environment which is used to 
run more complex code and operations on the EO-DT, such as the regridding code (Section 
2.4), ML-based anomaly detection code (Section 3.1), and MIIDAPS-AI (Section 1.2.2.2). 
Smaller, single-purpose codes were installed in Lambda, such as the ingest code (Section 
2.3.3), the search code (Section 2.3.4), and the geospatial mapping code (Section 2.3.5).  

As shown in Figure 1.13, typical processing required 150MB of memory and our system had 
8GB of memory, so we had more than enough memory for the prototype. Thus, we selected 
an “overpowered” EC2 for our use case. This highlights the benefit of using on-demand 
resources, which would only run using the needed resources and without excess. 

We estimated the cost assuming up to two simultaneous users, 100 user requests per 
month, and 1 GB per user request. Under these usage conditions, the monthly cost for a 
prototype EO-DT is estimated to be $1,292 per month (Table 5.1). The fees will depend on 
various factors, including your actual system usage. Any potential taxes are also not 
included. Our estimate is the runtime cost on AWS and does not include development costs 
to get the system up and running and ongoing maintenance. 

While not a run-time component of the prototype EO-DT, SageMaker was particularly cost-
saving because our team could start a GPU-enabled instance for training and testing ML 
models and shut them down when idle. The g4dn.xlarge (4vCPU, 4GPUs, 16GB mem) is a 
general-purpose GPU-enabled instance at $0.558 per hour. Assuming one data scientist, an 
always-on EC2 would cost $1,463 a month (not including storage), whereas SageMaker 
would cost $117.82 monthly for 160 hours of use (e.g., 8 hours a day for 20 workdays). We 
utilized Grafana Cloud for the prototype, which was free for up to three users. 

Figure 5.3 A time series of the costs of running our prototype EO-DT. The above does not reflect 
operational cost, but shows which resources are the most expensive.  
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Table 5.1 Cost estimates for a prototype EO-DT assuming up to two simultaneous users, 100 user requests 
per month, and 1 GB per user request. 

Monthly cost 

 $1,292 

 

Detailed Cost 

Service Description Monthly 

Amazon 
CloudFront 

Host for User Interface $0 

AWS Lambda Search Lambda, Map Lambda, Ingest Lambda $96 

Amazon 
Simple 
Notification 
Service (SNS) 

Metadata Ingest <$1  

Amazon 
Simple Queue 
Service (SQS) 

Metadata Ingest $2 

DynamoDB 
provisioned 
capacity 

Metadata Catalog/Stores metadata from NOAA 
OpenData 

$10  

Amazon EC2  Development EC2s $989 

S3 Standard Persistent storage for Lambda, Hosting the User 
Interface, data fusion downloads, map hosting 

$70 

Amazon 
CloudWatch 

Observability for Grafana $3 

Amazon Elastic 
Container 
Registry 

Containers for processes $16 

API Gateway For searching DynamoDB $0 

SageMaker Development environment for machine learning $105 

 

5.3.2 Operational EO-DT 
We estimated the cost, assuming up to 100 simultaneous users and an average of 1,000 
user requests over a month, 10 minutes per request, and 1 GB per request. Under these 
usage conditions, the cost is estimated to be $4,641 per month ($58,155 per year) for an 
operational EO-DT (Table 5.2). The actual fees will depend on various factors, including the 
usage of the EO-DT. Our estimate is the runtime cost on AWS and does not include 
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development costs to get the system up and running and ongoing maintenance. Any 
potential taxes are also not included. 

Table 5.2 Cost estimates for an operational EO-DT assuming up to 100 simultaneous users and an average 
of 1,000 user requests over a month, 10 minutes per request, and 1 GB per request. Estimate available 
online until Nov 26, 2024, at https://calculator.aws/#/estimate?id=2a3a6d9a142aadb1af918c46c06fdbb90f021454 

Estimate summary 

Upfront cost Monthly cost Total 12 months cost (Includes upfront costs) 

 $2,460   $4,641  $58,155 

 

Detailed Estimate 

Service Description Upfront Monthly Annual Configuration Summary 

Amazon 
CloudFront 

Host for User 
Interface 

- $95  $1,138  Number of requests 
(HTTPS) (1000000 per 
month), Data transfer out 
to internet (1 TB per 
month), Data transfer out 
to origin (.33 TB per 
month) 

AWS Lambda Search Lambda - $2 $28  Architecture (x86), Invoke 
Mode (Buffered), Number 
of requests (28187 per 
month), Amount of 
ephemeral storage 
allocated (512 MB), 
Amount of memory 
allocated (512 MB) 

AWS Lambda Map Lambda - $400 $4,802  Architecture (x86), Invoke 
Mode (Buffered), Number 
of requests (1000000 per 
month), Amount of 
ephemeral storage 
allocated (512 MB) , 
Amount of memory 
allocated (8,192 MB) 

AWS Lambda Ingest Lambda - $85  $1,015 Architecture (x86), Invoke 
Mode (Buffered), Number 
of requests (1000000 per 
month), Amount of 
ephemeral storage 
allocated (4096 MB), 
Amount of memory 
allocated (512 MB) 

https://calculator.aws/%23/estimate?id=2a3a6d9a142aadb1af918c46c06fdbb90f021454
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Amazon 
Simple 
Notification 
Service (SNS) 

Metadata Ingest - $1  $11  Data transfer Inbound: All 
other regions (1 TB per 
month), Data transfer 
Outbound: Not selected (0 
TB per month), Requests 
(1 million per month), SQS 
Notifications (1 million per 
month), The amount of 
outbound payload data 
scanned per month (10 
GB) 

Amazon 
Simple Queue 
Service (SQS) 

Metadata Ingest - $0  $0  Data transfer Inbound: 
Internet (1 TB per month), 
Data transfer Outbound: 
Not selected (0 TB per 
month), FIFO queue 
requests (1 million per 
month) 

DynamoDB 
provisioned 
capacity 

Metadata 
Catalog/Stores 
metadata from 
NOAA OpenData 

$2,460  $408  $7,361  Table class (Standard), 
Average item size (all 
attributes) (16 KB), Write 
reserved capacity term (1 
year), Read reserved 
capacity term (1 year), 
Data storage size (100 
GB) 

Amazon EC2  Grafana EC2 - $362  $4,342  Tenancy (Shared 
Instances), Operating 
system (Linux), Workload 
(Consistent, Number of 
instances: 1), Advance 
EC2 instance 
(m6g.4xlarge), Pricing 
strategy (On-Demand 
Utilization: 80 
%Utilized/Month), Enable 
monitoring (enabled), 
Data transfer Inbound: 
Not selected (0 TB per 
month), Data transfer 
Outbound: Not selected (0 
TB per month), DT Intra-
Region: (0 TB per month) 

S3 Standard Persistent storage 
for Lambda 

- $24  $283  S3 Standard storage (1 TB 
per month), PUT, COPY, 
POST, LIST requests to S3 
Standard (3000) 

S3 Public Hosting the User 
Interface, data 

- $116 $1,389 S3 Standard storage (1 
TB per month), PUT, 
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fusion downloads, 
map hosting 

COPY, POST, LIST 
requests to S3 
Standard (3000) Data 
transfer Inbound: 
Internet (1 TB per 
month), Data transfer 
Outbound: Internet (1 
TB per month) 

AWS Fargate Compute 
environment for 
data fusion 
containers 

- $3,002  $36,027 Operating system (Linux), 
CPU Architecture (x86), 
Average duration (10 
minutes), Number of 
tasks or pods (100 per 
hour), Amount of 
ephemeral storage 
allocated for Amazon ECS 
(100 GB), Amount of 
memory allocated (16 GB) 

Amazon 
CloudWatch 

Observability for 
Grafana 

- $52  $619  Number of Metrics 
(includes detailed and 
custom metrics) (100), 
GetMetricData: Number of 
metrics requested (1000), 
GetMetricWidgetImage: 
Number of metrics 
requested (1000), 
Number of other API 
requests (1000), 
Standard Logs: Data 
Ingested (1 GB), Logs 
Delivered to CloudWatch 
Logs: Data Ingested (1 
GB), Logs Delivered to S3: 
Data Ingested (1 GB), 
Number of Custom/Cross-
account events (100), 
Number of Dashboards 
(1), Number of Standard 
Resolution Alarm Metrics 
(100), Number of High 
Resolution Alarm Metrics 
(10), Number of Lambda 
functions (3), Number of 
requests per function 
(100 per hour) 

Amazon Elastic 
Container 
Registry 

Containers for 
processes (e.g., 
regridding, 

- $10  $120  Amount of data stored 
(100 GB per month) 
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anomaly 
detection) 

Step Functions 
- Standard 
Workflows 

Handler for AWS 
Batch 

- $9  $108 Workflow requests (1000 
per hour), State 
transitions per workflow 
(4) 

AWS Batch Handler for 
processes in ECR 
using Fargate 
compute 

- $0 $0 No charge 

AWS Web 
Application 
Firewall (WAF) 

Security for User 
Interface and API 

- $37 $444 Number of Web Access 
Control Lists (Web ACLs) 
utilized (2 per month), 
Number of Rules added 
per Web ACL (5 per 
month), Number of Rule 
Groups per Web ACL (1 
per month), Number of 
Rules inside each Rule 
Group (5 per month), 
Number of Managed Rule 
Groups per Web ACL (1 
per month) 

Elastic Load 
Balancing 

Security for 
Grafana 
Dashboard 

- $17 $199 Number of Application 
Load Balancers (1) 

API Gateway Searching 
DynamoDB, 
triggering Data 
Fusion 

 $2 $24 REST API request units 
(thousands), Cache 
memory size (GB) (None), 
WebSocket message units 
(thousands), HTTP API 
requests units 
(thousands), Average size 
of each request (10 MB), 
Average message size (32 
KB), Requests (100 per 
month), Requests (100 
per month) 

Data Transfer Transferring data 
out of EO-DT 

 $20 $240 Data transfer Inbound: All 
other regions (1000 TB 
per month), Data transfer 
Outbound: All other 
regions (1000 GB per 
month), Data transfer 
Intra-Region: (0 TB per 
month), Data transfer cost 
(20) 
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The most considerable cost is related to Fargate ($36,027/year), the compute engine for 
the data fusion containers. EKS is a cheaper solution, estimated at $17,059/year for ~ 600 
hours per month using an on-demand c5.2xlarge EC2 and one EKS cluster. While the 
runtime costs may be lower, this EKS solution requires more hands-on management of the 
EC2 systems by a cloud engineer, whereas Fargate will automatically allocate resources. 
These two systems are interchangeable in the architecture plan in Figure 5.1; one would 
remove AWS Fargate and replace it with EKS. 

The three Lambdas have substantially different costs due to their compute environment's 
size and frequency of invocation. The Ingest Lambda is run frequently but only needs 
512MB of memory, whereas the map lambda uses 8GB because the latter needs to read 
several large files into memory. If specific processes need high amounts of memory, they 
may need to be containerized and managed using Fargate. 

There are two pricing options available for Amazon DynamoDB, which are on-demand 
capacity mode and provisioned capacity mode. The provisioned capacity mode is more cost-
effective for consistent traffic, which is the case if a steady stream of incoming data is being 
ingested. This pricing option incurs a partial upfront cost. In an operational system, it may be 
beneficial to briefly use on-demand capacity mode to establish a baseline and switch to 
provisional capacity later. 

Grafana Cloud is relatively inexpensive (<$200/month) for a limited number of users. For an 
operational digital twin, we recommend using the self-hosted Grafana option for tighter 
integration with cloud computing resources, improved performance, and allowing for 
unlimited users. The minimum computing overhead for a self-hosted Grafana is small 
(t4g.nano, 512 MB RAM, 1 CPU), which is roughly $1.50 a month, but we recommend an 
upgraded instance (m6g.4xlarge) which would improve the performance and cost $362 per 
month. 

The final highly variable cost is transferring data from the EO-DT to another system, such as 
a scientist's working station or another digital twin. Inbound data into the EO-DT is free, but 
1000 GB of data transfer out of the EO-DT would cost $20. If interoperable digital twins 
proliferate and the data transfer rate increases (e.g., from 1 Terabyte to 100 Terabytes), this 
cost scales linearly from $20 to $2,000 monthly. 
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6 Recommendations 
In the original BAA, NOAA was interested in exploring how digital twins could (1) enhance our 
ability to process, monitor, quality-control, consolidate, fuse, and assimilate environmental 
observations; (2) streamline the satellite data ground processing and dissemination to users 
and applications; and (3) serve as the next generation ground enterprise system in 
operations. The BAA also sought to identify (4) the benefits of interfacing with the Earth 
System approach modeling effort in NOAA and (5) the best approaches for achieving an 
agile, scalable EO-DT. A complete discussion of the BAA goals is available online: 
https://www.nesdis.noaa.gov/events/digital-twin-earth-observations-eo-dt-using-artificial-
intelligence. 

Through our demonstration and this study, we found concrete examples of how an EO-DT 
can enhance the NESDIS data monitoring, processing, delivery, data fusion, and quality 
control. Using on-demand cloud resources, we found that an EO-DT can cost-effectively scale 
data processing and dissemination for a next-generation ground system. We identified 
commercial and open-source tools we recommend and others we do not. We also 
documented the many lessons learned in the process. Overall, we found that an EO-DT can 
meet the BAA exploratory requirements and recommend developing an operational EO-DT4. 

Section 1.1.2 identified several questions we sought to answer through this project. Table 
6.1 is a high-level summary of our answers and recommendations. 

Table 6.1 Summary of questions in Section 1.1.2 and a shorthand reference. 

Shorthand Question Quick Summary 

Cost How much will it cost to develop a 
fully capable digital twin? 

Prototype: $1,292 per month  

Operational: $4,641 per month 

Tools What are the best commercial 
and open-source tools to use? 

We recommend several serverless AWS 
resources, Python scripting and ML 
libraries, Grafana Dashboards. 

ML Can ML improve the performance 
of some of the ground system 
components? 

We found ML useful for detecting 
dataset anomalies in our proof-of-
concept study. 

Formats What data formats are optimal 
within the digital twin? 

We do not recommend reformatting to 
cloud optimized data formats. 
However, we recommend considering 
cloud-optimized filesystems. 

Access Can the digital twin improve data 
access to end users? 

We found that scalable, on-demand 
AWS resources can provide data in 
analysis-ready format and reduce data 
wrangling. 

                                                 
4 There is no planning for activity beyond the demonstration projects. See Disclaimer on page 4. 
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Latency Can the digital twin meet or 
exceed the latency requirements? 

We found that scalable, on-demand 
AWS resources can quickly deliver data 
to end users. 

Data Fusion How can the digital twin enable 
data fusion and ML? 

We found that classical methods can 
be used for gridding operations in 
scalable, on-demand cloud resources. 

We found that ML techniques can be 
used to fill gaps and improve the 
spatial resolution of satellite datasets, 
making them more useful for data 
fusion.  

Below is a summary of specific recommendations lessons learned, and where their detailed 
discussion can be found in the report. We link the recommendation back to the shorthand 
question notation in Table 6.1.  

1) Approach to Building an EO-DT 

a) Recommendation: “Keep It Simple” and build incrementally [Cost] 

(Section 1.1.4) We incorporated a “Keep It Simple” philosophy on the user interface. 
While users may need complex features in a fully operational digital twin, we aimed to 
minimize clutter from the interface. 

(Section 5.3.1) We estimated the cost assuming up to two simultaneous users, 100 user 
requests per month, and 1 GB per user request. Under these usage conditions, the 
monthly cost for a prototype EO-DT is estimated to be $1,292 per month. Our estimate is 
the runtime cost on AWS and does not include development costs to get the system up 
and running and ongoing maintenance. 

(Section 5.3.2) We estimated the cost, assuming up to 100 simultaneous users and an 
average of 1,000 user requests over a month, 10 minutes per request, and 1 GB per 
request. Under these usage conditions, the cost is estimated to be $58,155 per year for 
an operational EO-DT. Our estimate is the runtime cost on AWS and does not include 
development costs to get the system up and running and ongoing maintenance. 

b) Lesson Learned: On-demand resources are operationally robust once installed. 
However, they have a steep learning curve and their limitations need to be 
considered. [Tools] 

(Lesson Learned 2c) See “Consider container size and runtime when choosing Lambda 
over other containerized services” for an example 

c) Lesson Learned: TLEs need to be up-to-date otherwise, the file geolocation will 
incorrectly drift over time [Tools] 

(Section 2.3.3) An important consideration is that a satellite’s TLE changes over time to 
reflect satellite orbit changes due to drag. So, the TLE table must be updated once a day to 
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reflect these changes. We learned this lesson quite painfully when our initial testing did 
not return results in a specified bounding box when we tested it in March.  

Lambda deployment involves zipping the entire contents of a working directory and 
uploading, so we included a static copy of the TLE in the package. The query results were 
thousands of miles away from our bounding box by September because we were using an 
outdated TLE. Because we did not want Lambda to download the current TLE file every 
time it was invoked (which may lead to our IP being blocked by the host website), we wrote 
a script to download the TLE once a day to our local S3 and Lambda, then imports it each 
time it is invoked. 

d) Recommendation: Geohash improved processing efficiency in catalog at the 
expense of precision [Tools, Latency] 

(Section 2.3.2) Using geohash, there is no longer a dependency on data-specific readers 
like HDF libraries or specialized file readers, making the system more flexible for 
accommodating new data. A drawback is that the file position is not exact but is the nadir 
point of the center of the granule. To address this, we designed the search to return more 
results than needed, which can be further filtered in later processing steps once the file 
has been opened. 

e) Lesson Learned: Incorporate flexibility in SNS filters because S3 resources may be 
reorganized by large data providers [Tools] 

(Section 2.1) Overall, flexibility, maintainability, and scalability are the key strengths of our 
architecture. Our system was tested when the JPSS part of the NODD underwent 
reorganization, and our data paths no longer pointed to the files needed to populate the 
catalog - as seen in reduced data flow into our catalog database. Fortunately, our SNS 
filters are easy to update, and when we saw the reduced data flow, we could make 
changes. The system remained online through this episode, albeit with a short data 
outage for some products. Some future improvements would include incorporating 
containerization, adding security measures, and load balancing so the system can handle 
more simultaneous users 

2) Evaluation of Commercial Software and Services 

a) Recommendation: AWS TwinMaker not recommended for Earth digital twins (at 
this time) [Tools] 

(Section 2.1) During the project, we also evaluated several services that we did not 
ultimately decide to deploy in the EO-DT. For instance, we explored using TwinMaker, 
Amazon’s new digital twin service that provides a framework to integrate data streams 
from IoT sensors. An appealing characteristic of TwinMaker was that it fully managed the 
messaging and data flow within the system, and we could expand to accommodate new 
sensors and datasets and remove components if features were retired. However, upon 
testing, TwinMaker did not easily ingest NESDIS data sources, which included satellite 
sensor data, retrieval products, dataset production data, and user inputs. Instead, we 
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found that a combination of SNS/SQS and Lambda functions carried out many of the 
same functions as TwinMaker and were able to leverage Python packages that can read 
geospatial data formats. 

b) Recommendation: AWS Fargate useful for a robust operational EO-DT (if built) but 
not for rapid prototype development [Tools, Latency, Cost] 

(Section 2.1) We also considered using containers and resources such as AWS Fargate, a 
serverless compute engine for containers that work with Amazon Elastic Container Service 
(ECS) and Amazon Elastic Kubernetes Service (EKS). Fargate would have allowed us to 
deploy containerized applications without managing the EC2 instances. We ultimately 
decided that using EC2 with Python virtual environments was sufficient for the 
demonstration. However, if one is built, we recommend Fargate or another container 
orchestration approach for an operational EO-DT. 

(Section 5.3.2) The most considerable cost is related to Fargate (~$3,000/month), the 
compute engine for data fusion containers. EKS is a cheaper solution. While the runtime 
costs may be lower, EKS requires more hands-on management of the EC2 systems by a 
cloud engineer, whereas Fargate will automatically allocate resources. 

c) Lesson Learned: Consider container size and runtime when choosing Lambda over 
other on-demand services [Tools] 

(Section 2.1) Early in the project, we considered using Lambda to perform data fusion. 
However, Lambda has strict size limitations for the entire package (1GB) and strict 
processing time limits (<15 minutes to run). The data fusion processing time may exceed 
the time limit for large requests. Instead, we installed the code on an EC2. For a fully 
operational EO-DT, we recommend creating a docker image and deploying using a service 
like Amazon Elastic Container Service (ECS) to fully scalable the resources. Once the file is 
regridded, it is saved to another S3 directory linked to the map Lambda. If a new file is 
present, the map Lambda triggers. Lambda then reads the file and displays the regridded 
data on the leaflet map, which is then opened as a new tab on the user’s browser. 

d) Lesson Learned: Recommend DynamoDB, but utilize Z-order indexing in 
operational system instead of the GSI approach in the prototype [Tools, Latency] 

(Section 2.3.1) The fastest searches will query based on the partition and sort keys; 
querying the other fields is significantly slower. We needed users to be able to search the 
table based on multiple parameters: time, location, and product. A solution is to create 
Global Secondary Indexes (GSI), which copies the main table with different partition 
combinations and sort keys. GSI makes a copy of the main table, once for each different 
sort key.  

(Section 2.3.1) Toward the end of the project, we showed our approach to a DynamoDB 
subject matter expert who proposed an alternative, faster, and more cost-effective 
approach using Z-Order Indexing. This approach would require us to create a new column 
with a unique value by combining multiple columns' values and setting that field as the 
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sort key. Then, we can use a non-unique field as the partition key. This approach would be 
more effective because it would require fewer queries and copies of the main table. 

e) Recommendation: Use SageMaker for ML development teams [Tools, Cost] 

(Section 5.3.1) While not a run-time component of the prototype EO-DT, SageMaker was 
particularly cost-saving because our team could start a GPU-enabled instance for training 
and testing machine learning models and shut them down when idle. 

(Lesson Learned 4d) Also see “Need on-demand access to GPUs for some of the newest 
techniques” for examples 

3) Evaluation of Open-Source Software and Services 

a) Recommendation: Grafana suitable platform for dashboard [Tools] 

(Section 2.5) Grafana met our selection criteria for an EO-DT dashboard, which included 
(1) how well the platform interfaced with our EO-DT system and data streams, (2) if the 
platform produced a variety of customizable visualizations, including from geospatial data, 
and (3) if the platform operating costs were within our budget. Since our project focused 
on open-source solutions, we did not evaluate commercial platforms, like Tableau or 
Microsoft PowerBI. 

b) Recommendation: Used Grafana Cloud for demonstration (fully managed service 
by Grafana) but recommend migrating to AWS system to support more users and 
have complete ownership over the service. [Tools, Cost] 

(Section 5.3.2) While we chose to use the fully managed Grafana Cloud, Grafana is an 
open-source dashboard that can be self-hosted for free. An advantage of Grafana Cloud is 
that the developer only must focus on setting up the dashboard and metrics and less on 
the infrastructure to support it. Grafana Cloud is relatively inexpensive for a limited 
number of users. For a full digital twin, we recommend using the self-hosted Grafana 
option for tighter integration with cloud computing resources, cheaper hosting costs, and 
allowing for additional users. 

4) Machine Learning Improvements to Ground System 

a) Recommendation: Use PyTorch machine learning libraries and packages [Tools, 
ML, Data Fusion, Access] 

(Section 3.1.1) Early in the project, we had to decide which ML Python package to use for 
training. TensorFlow and PyTorch are both free, easily accessible, open-source software 
libraries. TensorFlow is older and thus has more online documentation and community 
support. PyTorch is a popular tool because of its user-friendly interface and flexible design. 
Despite PyTorch's comparatively smaller ecosystem and restricted multi-GPU support, it 
was designated as the chosen framework for DTAD. This decision was due to several 
factors: PyTorch's seamless integration with Python and its more intuitive API, the 
provision of dynamic computational graphs that render it particularly conducive for 
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intuitive processing and experimental endeavors, its robust foothold within academic 
circles, and its native support for the Open Neural Network (ONNX) format. 

b) Recommendation: ResNet-18 performed better than custom-tuned CNN for 
anomaly detection [Tools, ML] 

(Section 3.1.1) After segregating the images into their respective directories, labeled as 
"valid" or "invalid," we initiate model training. We initially chose to use CNN with a custom-
trained model. However, the model's accuracy did not achieve the desired benchmarks. 
The most proficient model trained under this paradigm attained an accuracy of 75% in the 
binary classification of satellite images, which was lower than expected, given how large 
some of the anomalies were. 

c) Recommendation: Classical methods adequate for regridding, but continue to 
explore ConvLSTM and ESRGAN techniques to better exploit more satellite 
observations [Data Fusion, Access] 

(Section 2.4.1) We developed a fast, simple regridding method that is agnostic of the data 
source and can be applied to all NESDIS datasets without re-training. We successfully 
tested and installed this code into our EO-DT prototype, and it successfully transformed 
satellite datasets from an irregular grid to a regular grid at a user’s requested spacing. 
The code processed a data granule on one CPU core within 30 seconds to 3 minutes for a 
50 km and 750 m VIIRS granule, respectively. Processing speeds can be improved by 
utilizing multithreading and containerization. 

(Section 3.2.1) We show an AOD prediction of ConvLSTM for a cloud-free scene. We used 
two hours (six, twenty-minute timesteps) AOD images to predict the next several 
timesteps. The observed AOD and the predicted results do an excellent job capturing 
areas of higher AOD. The model can make predictions further in time, but the results were 
unrealistic. Given that we are applying the ConvLSTM model to fill in clouds, not predict 
AOD, it is more critical that the next time step (t+1) agrees with the observed values. 

(Section 3.2.2) We show an example of the pre-trained ESRGAN sharpened resolution of a 
sample GOES-16 AOD image. In the native resolution image, GOES-16 AOD values are 
coarse when zooming into the focus region over Florida. The features are sharpened after 
processing with the ESRGAN model. The results show good visual agreement but need 
further validation with VIIRS AOD and AERONET before adopting in an EO-DT. In the pre-
trained model output, the pixel shapes take on a granular geometry, which may be 
controlled by developing a custom-trained model. Overall, ESRGAN shows promise for 
improving the spatial resolution of earth observations, especially for products available on 
different platforms. 

d) Lesson Learned: Training datasets remain a challenge and are very time 
consuming to construct [ML, Data Fusion, Access] 

(Section 3.2.1) We had to construct a training dataset that reduced the full disk image 
(5424x5424 pixels) into small samples that were 64x64 pixels. Each smaller image 
consists of 12 timestep observations of AOD. We needed all the images to be nearly 
cloud-free, which was challenging given that the mean cloud fraction of the earth is 60% 
(King et al., 2023). Thus, building an extended training dataset was time-consuming. 



Science and Technology Corp. Nov 30, 2023 89 

Using a year of data, we created 800 training samples (of 12 timesteps each) and 
validated/tested with 300 samples to refine the model. GOES-16 AOD is generated every 
10 minutes, and we initially used all available observations to train out data. However, 
scene-to-scene changes in AOD can be small, so the ConvLSTM predictions were 
unrealistic. Instead, we switched to 20-minute timesteps and saw more realistic 
propagation of AOD plumes. 

e) Lesson Learned: Models perform better during the validation period than when 
implemented in operations [ML, Data Fusion] 

(Section 3.1.4) It is evident that models tend to perform better in offline testing and 
training than when running in real-time. This underscores that even with long training 
periods, there is inherent unpredictability in real-time data, and the models may confuse 
natural phenomena as an anomaly and vice versa.  

f) Lesson Learned: Real training data better than synthetic [ML, Data Fusion] 

(Section 3.1.4) Our analysis suggests that training ML models with natural GOES-16 
anomalies yield better results than synthetic data with the VIIRS data. For machine 
learning-based anomaly detection to advance as a field, we recommend that NESDIS 
science teams help create large, labeled repositories of training data for the community to 
explore. 

g) Lesson Learned: Need access to GPU-enabled systems for some of the newest 
techniques [ML, Data Fusion, Access] 

(Section 2.4.3) While slower, many classical regridding techniques are less 
computationally intensive than their ML counterparts, as some ML models require GPU-
equipped instances for training. 

(Section 3.1.1) PyTorch is a popular tool because of its user-friendly interface and flexible 
design. Despite PyTorch's comparatively smaller ecosystem and restricted multi-GPU 
support, it was designated as the chosen framework for DTAD. 

(Section 3.2) The advantage of ML systems is that they can often outperform classic 
techniques regarding computational speed, taking advantage of GPU architectures. 

(Section 3.2) ESRGAN requires extensive training datasets and GPUs to process the data. 
As a result, we used a pre-trained model to evaluate the off-the-shelf version and see if it 
was feasible for an EO-DT.  

(Lesson Learned 2e) Also see SageMaker for a recommended on-demand solution. 

h) Lesson Learned: Still relying on offline dataset pre-processing and storage for 
training models, not fully implementing into memory [Formats, ML, Data Fusion] 

(Lesson Learned 5a) See cloud-optimized file system recommendations 

5) Data Formats 
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a) Recommendation: Keep data in native format (for now), but update the filesystems 
to be cloud-optimized [Formats, Access] 

(Section 2.4.3) We recommend adopting a cloud-optimized file system to expedite the 
processes of opening, downloading, and further processing the files. 

(Section 4.2) While newer formats have cloud-specific advantages, legacy formats like 
netCDF and HDF remain deeply entrenched in the community's practices and toolchains. 
Both Unidata and the HDF group, which manage the two filesystems, are actively studying 
and implementing solutions to libraries for these formats to reinforce their resilience and 
adaptability as systems evolve to the cloud. Considering this, it is pragmatic for 
institutions like NOAA and NASA to continue leveraging these formats. Transitioning to a 
new format would not only entail considerable resources for converting large archives but 
may also introduce complexities and unforeseen challenges in the community. Staying the 
course with netCDF and HDF ensures stability, continuity, and the ability to benefit from 
ongoing innovations in their ecosystems. 

b) Lesson Learned: Still need custom readers to open/read data [Formats, Access] 

(Section 2.3.4) Note that in a fully functional EO-DT, we envision the user will be able to 
select which files they wish to display. It is here that we open the files themselves for the 
first time. Each product requires a unique reader to parse the file contents. We only 
extracted one variable for simplicity, even though numerous fields are in the files. In the 
future, we imagine the end user could use the file contents as a search parameter. 
Because the quick look is intended to display data rapidly, we downsampled the data at a 
ratio of 10:1 for some of the larger files, such as those from the full disk ABI. 

(Section 2.4.3) Our analysis identified several bottlenecks that made data processing and 
usage difficult. A primary challenge arose from the unpacking and utilization of typical 
NetCDF4 files, which contain numerous variables helpful to an algorithm developer but 
may not apply to the average user. Unfortunately, the user must download the entire file 
to access only a small part of its contents. For instance, we only needed to access four 
variables (AOD550, QCAll, Latitude, and Longitude) out of the 21 geospatial variables in 
the VIIRS AOD. 
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7 Appendix 
7.1 Accessing Digital Resources 
All technological assets and documentation for the STC EO-DT prototype and this study are 
available online: https://gitlab.com/stc-ai. 

7.2 Meeting Summaries 
7.2.1 Biweekly Meeting Discussion 

• October 2022 
o Checking in with the timeline, STC is currently on schedule and focusing on 

setting up the EO-DT infrastructure on AWS and scheduling meetings with the 
NASA DT team. 

o STC completed training on AWS TwinMaker and scheduled a meeting with the 
TwinMaker lead application engineer to discuss the project. 

o STC picked an example use case around fire weather to work towards when 
building the EO-DT. In the use case, the user orders and combines multiple 
datasets relevant to assessing fire weather, air quality, and the presence of 
active fires. This could utilize the active fire, AOD, NUCAPS, and GFS datasets. 

o STC discussed data access pathways with the DEEVA team. Options included 
private FTP feed for the project or public access via AWS, CLASS. DEEVA team 
recommends using the public channels. The DEEVA team will follow up on 
datasets not in STAR’s portfolio (e.g., SUVI). 

o STC requests data readers where available, and the DEEVA team will provide 
them by the next biweekly. 

o STC states that the underlying philosophy is to use off-the-shelf tools, 
including existing NOAA resources. 

• November 2022 
o STC created an architecture map for the DT prototype. Collaborating with the 

AWS team to validate the system and get upgrade recommendations. 
o One challenge of implementing a DT is the data bottleneck. Getting data from 

CLASS can be slow, which could impact the processing times of implementing 
a full DT. 

o STC wants to keep the user experience in mind, STC team is concurrently 
examining the end use cases (from both user and management) with AWS 
setup and development. 

o STC and DEEVA discussed incorporating the MIIDAPS-AI into the DT at a later 
time. Not currently routinely run at STAR, but could be run on STC system. Can 
schedule a follow up TIM at a later time. 

• January 2023 
o Eric Maddy noted that when benchmarking, test speed performance is better 

when batching multiple files along with single-file tests. Performance can 
decline exponentially (for example) with increasing file sizes. 

• February 2023 
o Scheduled midterm demo for April 12, 2023. Planned for 1.5 hours (post 

mortem: we recommend in the future we schedule for 2 hours), each team 
member will talk for 10-15 mins. Will discuss our approach with slides and 
show a live, hands-on demo. 

https://gitlab.com/stc-ai
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o Discussed the value of super-resolution method for achieving fine scales in 
the EODT datasets. Can train ABI data to match VIIRS resolution. 

 Eric Maddy: Planning to use SR or GAN? Yi - we are evaluating both. 
 Beau: Will there be one model or multiple models, depending on the 

resolution? Yi - anticipate training one model/resolution scale. 
 Ramesh: Will you consider datasets other than AOD? 

o Ramesh: How are we implementing agile in this project? Through small, 
incremental installations into the digital twin, utilizing CI/CD in GitLab. Stand-
up meetings sprint into our workflow. Feedback from customers (like biweekly 
meetings) is also part of the agile process. 

o Sid asked if multiple DynamoDBs indicated multiple digital twins. No, to the 
user, they only see a single database. If implemented, this would be a 
backend solution, not one transparent to the user. 

o Discussed different gridding options for queries, such as h3 and geohash. 
Beau asked if this was for the data fusion step. STC clarified that this was just 
a query-only scheme and it was intended to optimize the system. 

o Sid shared some of his vision: 
 He is most interested in a flexible system where ML components could 

be swapped. Possibly one ML model per sensor/product.  
 AI models do not have to be 100% accurate, 60% is acceptable. The 

models are placeholders for a full-blown EODT if implemented by 
NOAA. The models can be fine-tuned later.  

 Very interested in the infrastructure and feasibility of meeting 
requirements. EODT could become the next-generation architecture 
and possibly replace the existing ground system. Looking for possible 
improvements to the value chain. 

 Considers success/wins: 
 Demo with a hook into UFS/GFS 
 Couples with another digital twin 

 Wants STC team to stay in the research loop/NASA activities 
 NASA organized around science themes interfaced with DTs 

that are part of a federation 
 Engage in various activities, e.g., NAS (attended), 

DestinationEarth meetings 
• March 2023 

o Discussed AGU session on digital twins - followed up with NASA. They already 
planned to organize a session. 

o Ramesh would look into an AMS session, and NOAA would organize 
 Discussed Sid’s abstract submission to EUMETSAT 2023, “Informing 

NOAA’s Next-Generation Space and Ground Architectures: Example 
Concepts of Hyperspectral Microwave Sensor and Earth System Digital 
Twin” 

 Preparing for Midterm Review on April 12, 2023 
• April 2023 

o Midterm review and retrospective meeting 
• May 2023 
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o Clarified that the final report is intended to be the roadmap to building a 
digital twin. 

o Ramesh pointed out that it was not clear that we are not moving any data 
around in our plan (data are “in place”). This is advantageous from a file 
storage perspective. STC should highlight this more. 

o Ryan B. said our plans make sense, and vision is coming together. 
o Ramesh pointed out that the Grafana cloud is appropriate for the demo, but 

NOAA would likely need self-managed Grafana for a full EODT for additional 
security. STC confirmed it will include this info in the final report. 

o The NOAA team is interested in on-prem versus cloud service costs demo 
versus total system costs. 

o Ramesh recommends we check back on the STC proposal, ensuring all items 
are discussed. If there are unexpected challenges or changes to the plan, they 
are interested in the why and the reasons for the changes. 

o Had a side discussion on the definition of digital twin: often, the first thing 
discussed in a meeting, there are conflicting definitions. Fundamental 
similarities are decision support and making sense of a “bewildering” amount 
of data. 

o  
• June 2023 

o STC is adding three additional months to Analytics and ML augmentation of 
the EO-DT for anomalies/fusion knowledge graph study. 

o The anomaly study is complete, and there is additional time to study other 
sensors (VIIRS, CrIS). 

o Previously concerned about S3 reorganization, NODD reorganization is in 
progress, so some of the ingest links have to be updated or may break in the 
future. 

o Ramesh and Beau want to space out the three reviews in 
September/October/ STC is working to schedule a meeting room for a hybrid 
format. 

o Ramesh and Beau want to review abstracts before submission to AMS/AGU 
o Ramesh requested a draft of the final report before the final demonstration. 

Noted that the final report is intended to be a road map to building a digital 
twin, want to know if NOAA’s needs are met through a digital, the path 
forward, and the dead ends. 

o Ryan Berkheimer discussed interest in learning about the value that 
knowledge graphs may have in an operational paradigm. Knowledge graphs 
are a way to unlock the metadata within NESDIS data. 

• July 2023 
o STC showed results from backfilling data. Eric Maddy suggested that we have 

some QC to show the age of the pixel. STC implemented this already but did 
not include it in the presentation (will show at another meeting). 

o Ryan Berkheimer discussed NCEI's activity in using knowledge graphs and 
shared a helpful report on cloud-optimized file formats. 

o Ramesh encouraged us to submit AMS abstract to EODT sessions 
o Ramesh wanted clarification on the current schedule, as many items have an 

Aug 31 due date. STC stated that some tasks (the data fusion step) were 
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bigger for the demo while others (knowledge graphs, file formats) were 
smaller and intended for the final report. The data query task for the demo is 
nearly complete. STC has no concerns about the current schedule. 

o STC attended the digital twin meeting/NASA town hall at the IGARSS 2023 
meeting. 

• August 2023 
o Provided an overview of remaining tasks and their status 
o Shows partial demonstration of the user interface for EO-DT to Eric Maddy 

• September 2023 
o Final demonstration 

• October and November 2023 
o Technical report preparation, review, and submission 
 

7.2.2 Kickoff Meeting Discussion 
• STC team’s overarching goal is to produce a study with recommendations on building 

a fully operational EODT. The STC team will accomplish this by building a prototype. 
• The NOAA team requests EODT demonstrations, and the STC team will provide two, 

one at the midpoint and again at the final meeting. 
• Sid emphasizes the value of documenting sister DT efforts at NASA/Destination Earth 

to ensure an operational NOAA EODT is interoperable with those efforts. 
• Sid reiterates that processing time requirements are not fixed but wants to ensure 

the system is fast (in contrast, data can take hours and days to process in the current 
ground system). 

• Sid requests that the STC team consider adding NWP to the data fusion portfolio in 
the EO-DT to increase gap-filling/augment satellite data products in the product 
catalog; STC team agrees. 

• The STC team emphasizes that risk is mitigated via good communication with the 
customer and leveraging existing services, technologies, and peer-reviewed 
methodologies. 

• The DEEVA team within NOAA can provide sample files and readers for various data 
formats to assist the STC team. 

 
Recommendations and Action Items: 

• The NOAA team asks what kinds of events will constitute an anomaly. STC team will 
use both injected noise and simulated anomalies that have happened before. Will 
work with Flavio’s team for these tests. 

• In addition to working with Jacqueline, STC will establish a POC within the European 
digital twin project. 

• Sid recommends that the final report include findings on whether (1) NESDIS’s goals 
can be achieved via an EODT and (2) recommendations of what needs to be done to 
scale up and allow NESDIS to go from prototype to full operational model. 

• Sid recommends that the web portal incorporate a data visualization component. 
• Beau requests monthly reporting to help keep track of progress during bi-weekly agile 

meetings. 
7.2.3 Midterm Meeting Discussion 

• Slide 7: Why is Grafana outside of AWS? 
• STC uses the Grafana cloud, but Grafana can be deployed within AWS. 
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• Slide 9: Would like STC to summarize challenges/solutions in the final report, and 
how issues would play out in a fully deployed EO-DT 

• Slide 15: Some clarification about the data ingest step: 
• Catalogs the data in table on slide 14 
• Ingest assumes data integrity, paired with anomaly detection to explore how AI 

can enhance NESDIS processing system. 
• The focus is searchability. Data are left in their native formats 
• Data ingest does not re-grid to a standard grid, which is completed in the data 

fusion step (slides 35-44) 
• Slide 23: What is the computational cost of running the model? 

• Training: 2-3 hours/~4,000 files, running: 10 seconds/file 
• Slide 23: Does it say where/why the image fails? Would like to see STC continue to 

explore the path to trust. 
• CNN does not do that, but it is something STC will explore in the future, either 

another technique or by pairing with an explainable AI method 
• Slide 24: How does the confusion matrix stack up against what forecasters see? 

• Seems reasonable from STC experience. STC can follow up with NWS users or 
validation teams at NOAA 

• Slide 24: GOES-16/-17/-18: How did the GOES-17 ABI anomalies (which were 
obvious) influence detection in GOES-16/-18? 
• 60% of the training data was GOES-17 ABI, which was helpful because it 

produced many “invalid” images. All satellites were used for training/test. 
• Slide 24: How is it different if you remove the word “digital twin” from the workflow? 

• The ML-approach in the anomaly detection step is not different but is tailored to 
the EO-DT problem at hand/adapted for a specific use case 
• The definition of a digital twin and what a digital twin should do varies within 

the earth sciences community. 
• What is the core component/heart of the EO-DT? Would like this to be 

emphasized in the final demo 
• The data fusion step combines the NESDIS assets. That is the core engine of 

the digital twin (slides 35-44) 
• How can an EO-DT predict and replicate Earth processes? What is quality control? 

• STC was focused on enhancing the user experience and modeling the ground 
system (not the earth system). BAA did not call explicitly for an Earth System 
Digital Twin (slides 4-5) 

• STC can explore an ESDT through the fire weather/air quality science use 
case (slide 8 and slide 38) and include a summary of results in final 
demonstration 

7.2.4 Final Review Discussion 
Q: Why did you use the NOAA NODD instead of the CLASS archive? 

A: NODD is more cloud-friendly/represents a better approximation of the 'future state' 
archive. Better to develop against the NODD. 

Q: In addition to collocating the different types of data to the same temporal and spatial 
spot, data fusion also should 'fuses' or merges the different sources of the 
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same data into a single value. I get a sense that the merging aspect of the data fusion in not 
present in this demo. Am I misunderstanding this aspect? 

A: For the demonstration, we did not explicitly merge multiple datasets of the same type. 
Instead, we focused on the pre-requisite steps to combining different types of observations. 
However, the tools we developed can be updated to combine data in a fully operational 
digital twin. 

Q: Are there any plans to experiment with pixel-level labels via image segmentation, so 
images that are only partially invalid can be more effectively used?  

A: We didn’t explore pixel labels, but the invalid portions could be identified using multi-label 
classification. The flagged regions could be combined with other ML techniques, like 
ConvLSTM, to fill in invalid regions.  

Q: If NOAA implemented an operational EO-DT, what is the biggest thing to consider if they 
decide to implement it?  

A: We recommend defining the requirements, starting with smaller goals that can be scaled 
into bigger project needs. [STC will include more recommendations in the final report] 
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7.3 Acronyms 
Below is a list of acronyms that were used in this report. 

Acronyms Definition 

ABI Advanced Baseline Imager 

ACF Analytic Collaborative Framework 

AERONET Aerosol Robotic Network 

AGU American Geophysical Union 

AIST Advanced Information Systems Technology 

AMS American Meteorological Society 

AMSU Advanced Microwave Sounding Unit 

AOD Aerosol Optical Depth 

API Application Programming Interface 

ATMS Advanced Technology Microwave Sounder 

AVHRR Advanced Very High Radiometer 

AWIPS Advanced Weather Interactive Processing System 

AWS Amazon Web Services 

AWS Amazon Web Services 

BAA Broad Agency Announcement 

CDN Content Delivery Network 

CI/CD Continuous Integration/Continuous Deployment 

CLASS Comprehensive Large Array-data Stewardship System 

CLI Command Line Interface 

CMR Common Metadata Repository 

CNES Centre National d'Etudes Spatiales 

COG Cloud-optimized GeoTIFFs 

CONOPS Concept of Operations 

CONUS Continental United States 

ConvLSTM Convolutional Long short-term memory 

CrIS Cross-track Infrared Sounder 

DAACS Distributed Active Archive Centers (DAAC) 

DB Database 

DestinE Destination Earth  
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DITTO Digital Twins of the Ocean 

DQF Data Quality Flags 

DT Digital Twin 

DTAD Digital Twin Anomaly Detection 

EC2 Elastic Cloud Computing 

ECMWF European Centre for Medium-Range Weather Forecasts 

ECS Elastic Container Service 

EKS Elastic Kubernetes Service 

EO-DT Earth Observing Digital Twin 

ESA European Space Agency 

ESA European Space Agency 

ESDT Earth System Digital Twins 

ESRGAN Super-Resolution Generative Adversarial Networks 

ESTO Earth Science Technology Office 

EUMETSAT European Meteorological Satellites 

Geo Geostationary 

GEOS Goddard Earth Observing System 

GEOS-CF GEOS Composition Forecast system 

GOES Geostationary Operational Environmental Satellites 

GOES-R GOES – Series R 

GradCAM Gradient-weighted Class Activation Mapping 

GRIB GRIdded Binary or General Regularly-distributed Information in Binary form 

GSI Global Secondary Indexes 

HDF Hierarchical Data Format 

HPC High Performance Computing 

HYSPLIT  Hybrid Single-Particle Lagrangian Integrated Trajectory model 

IASI Infrared Atmospheric Sounding Interferometer 

IDEAS Integrated Digital Earth Analysis System 

IoT Internet of Things 

JPSS Joint Polar Satellite System 

JSON JavaScript Object Notation 

JV Joint Venture 
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LSTM Long short-term memory 

MetOp Meteorological Operational Satellite Program of Europe 

MIIDAPS-
AI 

multi-instrument inversion and data assimilation preprocessing system, 
artificial intelligence version 

ML Machine Learning 

NASA National Aeronautics and Space Administration 

NCCF NESDIS Common Cloud Framework 

NCEI National Centers for Environmental Information 

NCEP National Centers for Environmental Prediction 

NESDIS National Environmental Satellite, Data, and Information Service 

NetCDF Network Common Data Form 

NOAA National Oceanic and Atmospheric Administration 

NODD NOAA Open Data Dissemination 

NoSQL No Structured Query Language 

NSOF NOAA Satellite Operations Facility 

NUCAPS NOAA Unique Combined Atmospheric Processing System 

OMPS Ozone Mapping and Profiler Suite 

ONNX Open Neural Network 

OPPA Office of Projects, Planning, and Analysis 

OSPO Office of Satellite and Product Operations 

PDA Product Distribution and Access 

REQ Request 

ResNet-18 Residual Neural Network 

RESP Response 

RESTful REpresentational State Transfer (compliant) 

RMSE Root Mean Square Error 

RNN recurrent neural network 

RO Radio Occultation 

S3 Simple Storage Service  

SAE Systems Architecture and Engineering 

SNPP Suomi National Polar-orbiting Partnership 

SNS Simple Notification Service 
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SQS Simple Queue Service 

SRGAN Super-Resolution Generative Adversarial Networks 

SST Sea Surface Temperature  

STAC Spatio-Temporal Asset Catalog 

STAR Center for Satellite Applications and Research 

TLE Two Line Elements 

UCAR University Corporation of Atmospheric Research 

VIIRS Visible Infrared Imaging Radiometer Suite 

VPC Virtual Private Cloud 

VPN Virtual Private Network 

WBS Work Breakdown Structure 

XAI Explainable Artificial Intelligence 
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