GSFC JPSS CMO December 29, 2021 Released

474-00448-01-26, Revision K Joint Polar Satellite System (JPSS) Code 474

Joint Polar Satellite System (JPSS) Algorithm Specification Volume I: Software Requirement Specification (SRS) for the VIIRS Imagery

NOAA / NASA

Goddard Space Flight Center Greenbelt, Maryland

Joint Polar Satellite System (JPSS) Algorithm Specification Volume I: Software Requirement Specification (SRS) for the VIIRS Imagery

Review/Signature/Approval Page

Prepared By:

JPSS Ground Segment Systems Engineering

Approved By:

Kellyann F. Jeletic Ground Segment Project SEIT Lead

Heather Kilcoyne JPSS Ground Segment Project Manager

Electronic Approval available on-line at: <u>https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm</u>

Preface

This document is under JPSS Ground Segment (GS) configuration control. Once this document is approved, JPSS approved changes are handled in accordance with Class I and Class II change control requirements as described in the JPSS Configuration Management Procedures, and changes to this document shall be made by complete revision.

Any questions should be addressed to:

JPSS Configuration Management Office NASA/GSFC Code 474 Greenbelt, MD 20771

Change History Log

Revision	Effective Date	e Description of Changes					
		(Reference the CCR & CCB/ERB Approve Date)					
Rev-	Aug. 29, 2013	This version incorporates 474-CCR-13-1178 which was					
		approved by JPSS Ground ERB on the effective date shown.					
A	Jan 23, 2014	This version incorporates 474-CCR-13-1457 which was					
		approved by JPSS Ground ERB on the effective date shown.					
A1	Oct 23, 2014	This version incorporates 474-CCR-14-2091 which was					
		approved by the JPSS Ground ERB for CO10 on the effective					
		date shown.					
В	Nov 20, 2014	This version incorporates 474-CCR-14-1721, 474-CCR-14-					
		1741, 474-CCR-14-1781, 474-CCR-14-1793 and 474-CCR-14-					
		2120 which was approved by JPSS Ground ERB on the effective					
	F 1 10 0016	date shown.					
C	Feb 12, 2016	This version incorporates 4/4-CCR-14-2110, 4/4-CCR-15-					
		2452, 4/4-CCR-15-2480, 4/4-CCR-15-2657 and 4/4-CCR-16-					
		27/6 which was approved by JPSS Ground ERB on the effective					
02000	G 22 2016	date shown.					
0200D	Sep 22, 2016	I his version incorporates 4/4-CCR-16-2939 and 4/4-CCR-16-					
		dota shown					
0200E	Ion 11, 2017	This version incomparates 474 CCD 16 2100 which was					
0200E	Jan 11, 2017	approved by IDSS Ground EDD on the effective data shown					
0200E	Feb 00 2018	This version incorporates 474 CCP 18 3822 which was					
02001	100 09, 2018	approved by IPSS Ground EPB on the effective date shown					
G	Dec 1/ 2018	This version incorporates 474-CCR-18-4203 This version					
U	Dec 14, 2018	incorporates 0220A of 474-00448-01-26-B0220 dated					
		01/11/2017 to create this baseline. This was approved by the					
		IPSS Ground ERB on the effective date shown					
Н	Oct 24 2019	This version incorporates 474-CCR-19-4584 which was					
**	00021,2019	approved by the JPSS Ground ERB on Oct 17, 2019 and by the					
		JPSS Ground Segment CCB on the effective date shown.					
Τ	Sep 14, 2020	This version incorporates 474-CCR-19-4697 which was					
-	~~p 1., 2020	approved by the JPSS Ground ERB on Nov 26, 2019 and by the					
		JPSS Ground Segment CCB on Dec 5, 2019; 474-CCR-19-4719					
		which was approved by the JPSS Ground ERB on Mar 11, 2020					
		and by the JPSS Ground Segment CCB on Mar 26, 2020; 474-					
		CCR-20-5127 which was approved by the JPSS Ground ERB on					
		Jul 24, 2020 and by the JPSS Ground Segment CCB on Jul 30,					
		2020; 474-CCR-19-4631 which was approved by the JPSS					
		Ground ERB on Jul 21, 2020 and by the JPSS Ground Segment					
		CCB on Jul 30, 2020; 474-CCR-20-4960 which was approved					
		by the JPSS Ground ERB on Apr 11, 2020 and by the JPSS					
		Ground Segment CCB on the effective date shown.					

Check the JPSS MIS Server at https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm to verify that this is the correct version prior to use.

J	Mar 09, 2021	This version incorporates 474-CCR-21-5418 which was
		approved by the JPSS Ground ERB on Mar 09, 2021 and by the
		JPSS Ground Segment CCB on the effective date shown.
Κ	Aug 26, 2021	This version incorporates 474-CCR-21-5445 which was
	_	approved by the JPSS Ground ERB on May 07, 2021 and by the
		JPSS Ground Segment CCB on the effective date shown.

Table of Contents

1	INTF	RODUCTION 1	l
	1.1	Identification 1	l
	1.2	Algorithm Overview	l
	1.3	Document Overview	l
2	REL	ATED DOCUMENTATION	2
	2.1	Parent Documents	2
	2.2	Applicable Documents	2
3	ALG	ORITHM REQUIREMENTS	3
	3.1	States and Modes	3
		3.1.1 Normal Mode Performance	3
		3.1.2 Graceful Degradation Mode Performance	5
	3.2	Algorithm Functional Requirements	5
		3.2.1 Product Production Requirements	5
		3.2.2 Algorithm Science Requirements	5
		3.2.3 Algorithm Exception Handling)
	3.3	External Interfaces	l
		3.3.1 Inputs	1
		3.3.2 Outputs	3
	3.4	Science Standards)
	3.5	Metadata Output)
	3.6	Quality Flag Content Requirements)
	3.7	Data Quality Notification Requirements	l
	3.8	Adaptation	l
	3.9	Provenance Requirements	l
	3.10	Computer Software Requirements	l
	3.11	Software Quality Characteristics	l
	3.12	Design and Implementation Constraints	l
	3.13	Personnel Related Requirements	3
	3.14	Training Requirements	3
	3.15	Logistics Related requirements	3
	3.16	Other Requirements	3
	3.17	Packaging Requirements	3
	3.18	Precedence and Criticality	1
APPI	ENDI	X A. REQUIREMENTS ATTRIBUTES	5

List of Figures

Figure: 3-1	VIIRS Imagery Data	Flows	13
-------------	--------------------	-------	----

List of Tables

10000, 51 $57500000010011001000100110001000100000000$	Table: 3-1	Systems R	esource Flow Matrix:	VIIRS Imagery	14
---	------------	-----------	----------------------	---------------	----

1 INTRODUCTION

The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA) next-generation operational Earth observation program that acquires and distributes global environmental data primarily from multiple polar-orbiting satellites. The program plays a critical role in NOAA's mission to understand and predict changes in weather, climate, oceans and coasts, and the space environment, which support the Nation's economy and protect lives and property. For information regarding the JPSS Program, missions, instruments, and partners, see the JPSS website at https://www.jpss.noaa.gov/.

1.1 Identification

This SRS provides requirements for the VIIRS Imagery Environmental Data Records (EDRs), generated from all 5 I-bands, a Day Night Band (DNB), and all 16 M-bands.

1.2 Algorithm Overview

The algorithm merely transforms the VIIRS SDRs to a Ground-Track Mercator (GTM) projection. All imagery products report a top-of-atmosphere radiance. In addition, emissive-band imagery reports a top-of-atmosphere brightness temperature, and reflective-band imagery reports a top-of-atmosphere reflectance.

Section	Description
Section 1	Introduction - Provides a brief overview of the JPSS Ground System and the relevant
	algorithm, as reference material only.
Section 2	Related Documentation - Lists related documents and identifies them as Parent,
	Applicable, or Information Documents such as, MOAs, MOUs, technical
	implementation agreements, as well as Data Format specifications. This section also
	establishes an order of precedence in the event of conflict between two or more
	documents.
Section 3	Algorithm Requirements - Provides a summary of the science requirements for the
	products covered by this volume.
Appendix A	Requirements Attributes - Provides the mapping of requirements to verification
	methodology and attributes.

1.3 Document Overview

2 RELATED DOCUMENTATION

The latest JPSS documents can be obtained from URL:

<u>https://jpssmis.gsfc.nasa.gov/frontmenu_dsp.cfm</u>. JPSS Project documents have a document number starting with 470, 472 or 474 indicating the governing Configuration Control Board (CCB) (Program, Flight, or Ground) that has the control authority of the document.

2.1 Parent Documents

The following reference documents are the Parent Documents from which this document has been derived. Any modification to a Parent Document will be reviewed to identify the impact upon this document. In the event of a conflict between a Parent Document and the content of this document, the JPSS Program Configuration Change Board has the final authority for conflict resolution.

Doc. No.	Document Title
474-01541	Joint Polar Satellite System (JPSS) Ground System Requirements Document
	(GSRD)
474-01543	Joint Polar Satellite System (JPSS) Ground Segment Data Product Specification
474-00448-01-01	Joint Polar Satellite System (JPSS) Algorithm Specification Volume I: Software
	Requirements Specification (SRS) for the Common Algorithms

2.2 Applicable Documents

The following documents are the Applicable Documents from which this document has been derived. Any modification to an Applicable Document will be reviewed to identify the impact upon this document. In the event of conflict between an Applicable Document and the content of this document, the JPSS Program Configuration Change Board has the final authority for conflict resolution.

Doc. No.	Document Title
474-00448-02-26	Joint Polar Satellite System (JPSS) Algorithm Specification Volume II: Data
	Dictionary for the VIIRS Imagery
474-00448-04-26	Joint Polar Satellite System (JPSS) Algorithm Specification Volume IV: Software Requirements Specification Parameter File (SRSPF) for the VIIRS Imagery

3 ALGORITHM REQUIREMENTS

3.1 States and Modes

3.1.1 Normal Mode Performance

SRS.01.26_152 The VIIRS NCC Imagery algorithm shall calculate the value with a horizontal spatial resolution of 0.8 km across swath.

Rationale: The horizontal spatial resolution value for the Near Constant Contract (NCC) Imagery uses Day/night band resolution and was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_155 The VIIRS NCC Imagery algorithm shall calculate the position of the pixel with a 3-sigma mapping uncertainty at nadir of 1 km.

Rationale: The mapping uncertainty at nadir for the NCC Imagery was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_156 The VIIRS NCC Imagery algorithm shall calculate the position of the pixel with a 3-sigma mapping uncertainty at edge of swath of 3 km.

Rationale: The mapping uncertainty at edge of swath for the NCC Imagery was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_170 The VIIRS Reflective I-band Imagery algorithm shall produce the reflectance with a horizontal spatial resolution at nadir of 0.4 km.

Rationale: The horizontal spatial resolution value at nadir for the I-band Imagery was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_171 The VIIRS Reflective I-band Imagery algorithm shall produce the reflectance with a horizontal spatial resolution at edge of swath of 0.8 km.

Rationale: The horizontal spatial resolution value at edge of swath for the I-band Imagery was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_172 The VIIRS Reflective I-band Imagery algorithm shall produce the reflectance with a 3-sigma mapping uncertainty at nadir of 1 km.

Rationale: The mapping uncertainty at nadir for the I-band Imagery was flowed down from the Level 1 and Level 2 documents, with the application of the associated data in the product.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_173 The VIIRS Reflective I-band Imagery algorithm shall produce the reflectance with a 3-sigma mapping uncertainty at edge of swath of 3 km.

Rationale: The mapping uncertainty at edge of swath for the I-band Imagery was flowed down from the Level 1 and Level 2 documents, with the application of the associated data in the product.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_184 The VIIRS Emissive I-band Imagery algorithm shall produce the brightness temperature with a horizontal spatial resolution at nadir of 0.4 km.

Rationale: The horizontal spatial resolution value at nadir for the I-band Imagery was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_185 The VIIRS Emissive I-band Imagery algorithm shall produce the brightness temperature with a horizontal spatial resolution at edge of swath of 0.8 km.

Rationale: The horizontal spatial resolution value at edge of swath for the I-band Imagery was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_186 The VIIRS Emissive I-band Imagery algorithm shall produce the brightness temperature with a 3-sigma mapping uncertainty at nadir of 1 km.

Rationale: The mapping uncertainty at nadir for the I-band Imagery was flowed down from the Level 1 and Level 2 documents, with the application of the associated data in the product.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_187 The VIIRS Emissive I-band Imagery algorithm shall produce the brightness temperature with a 3-sigma mapping uncertainty at edge of swath of 3 km.

Rationale: The mapping uncertainty at edge of swath for the I-band Imagery was flowed down from the Level 1 and Level 2 documents, with the application of the associated data in the product.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_200 The VIIRS Reflective M-band Imagery algorithm shall produce the reflectance with a horizontal spatial resolution at nadir of 0.8 km.

Rationale: The horizontal spatial resolution value at nadir for the M-band Imagery was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_201 The VIIRS Reflective M-band Imagery algorithm shall produce the reflectance with a horizontal spatial resolution at edge of swath of 1.6 km.

Rationale: The horizontal spatial resolution value at edge of swath for the M-band Imagery was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_202 The VIIRS Reflective M-band Imagery algorithm shall produce the reflectance with a 3-sigma mapping uncertainty at nadir of 1 km.

Rationale: The mapping uncertainty at nadir for the M-band Imagery was flowed down from the Level 1 and Level 2 documents, with the application of the associated data in the product.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_203 The VIIRS Reflective M-band Imagery algorithm shall produce the reflectance with a 3-sigma mapping uncertainty at edge of swath of 3 km.

Rationale: The mapping uncertainty at edge of swath for the M-band Imagery was flowed down from the Level 1 and Level 2 documents, with the application of the associated data in the product.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_213 The VIIRS Emissive M-band Imagery algorithm shall produce the brightness temperature with a horizontal spatial resolution at nadir of 0.8 km.

Rationale: The horizontal spatial resolution value at nadir for the M-band Imagery was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_214 The VIIRS Emissive M-band Imagery algorithm shall produce the brightness temperature with a horizontal spatial resolution at edge of swath of 1.6 km.

Rationale: The horizontal spatial resolution value at edge of swath for the M-band Imagery was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_215 The VIIRS Emissive M-band Imagery algorithm shall produce the brightness temperature with a 3-sigma mapping uncertainty at nadir of 1 km.

Rationale: The mapping uncertainty at nadir for the M-band Imagery was flowed down from the Level 1 and Level 2 documents.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_216 The VIIRS Emissive M-band Imagery algorithm shall produce the brightness temperature with a 3-sigma mapping uncertainty at edge of swath of 3 km.

Rationale: The mapping uncertainty at edge of swath for the M-band Imagery was flowed down from the Level 1 and Level 2 documents, with the application of the associated data in the product.

Mission Effectivity: JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

3.1.2 Graceful Degradation Mode Performance

Not applicable.

3.2 Algorithm Functional Requirements

3.2.1 Product Production Requirements

Not applicable.

3.2.2 Algorithm Science Requirements

SRS.01.26_145 The VIIRS NCC Imagery EDR software shall incorporate a computing algorithm provided for pseudo albedo.

Rationale: The EDR software through its algorithm must use normalized, top-of-atmosphere radiances to produce NCC Imagery in accordance with the JPSS VIIRS Imagery Products Algorithm Theoretical Basis Document (ATBD) (D0001-M01-S01-008).

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_146 The VIIRS NCC Imagery EDR software shall incorporate a computing algorithm provided for mapping DNB SDR geolocation to the Ground Track Mercator grid.

Rationale: The EDR software through its algorithm must map DNB SDR geolocation to a GTM grid to produce geolocation for NCC Imagery.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_178 The VIIRS Emissive I-band Imagery EDR software shall incorporate a computing algorithm provided for calibrated, top-of-atmosphere radiances.

Rationale: The calibrated TOA radiance is one of Emissive I-band SDR products and is used to produce Emissive I-band Imagery EDR in accordance with the JPSS VIIRS Imagery Products Algorithm Theoretical Basis Document (ATBD) (D0001-M01-S01-008).

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_179 The VIIRS Emissive I-band Imagery EDR software shall incorporate a computing algorithm provided for calibrated, top-of-atmosphere brightness temperatures.

Rationale: The calibrated TOA brightness temperature is one of Emissive I-band SDR products and is used to produce Emissive I-band Imagery EDR in accordance with the JPSS VIIRS Imagery Products Algorithm Theoretical Basis Document (ATBD) (D0001-M01-S01-008).

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_162 The VIIRS Reflective I-band Imagery EDR software shall incorporate a computing algorithm provided for calibrated, top-of-atmosphere radiances.

Rationale: The calibrated TOA radiance is one of Reflective I-band SDR products and is used to produce Reflective I-band Imagery EDR in accordance with the JPSS VIIRS Imagery Products Algorithm Theoretical Basis Document (ATBD) (D0001-M01-S01-008).

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_163 The VIIRS Reflective I-band Imagery EDR software shall incorporate a computing algorithm provided for calibrated, top-of-atmosphere reflectances when the sensor mode is "day".

Rationale: The Reflective I-bands SDR products are produced for daytime only and are used to produce Reflective I-band Imagery EDR in accordance with the JPSS VIIRS Imagery Products Algorithm Theoretical Basis Document (ATBD) (D0001-M01-S01-008).

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_164 The VIIRS I-band Imagery EDR software shall incorporate a computing algorithm provided for mapping I-band SDR geolocation to the Ground Track Mercator grid.

Rationale: The EDR software through its algorithm must map I-band SDR geolocation to a GTM grid to produce geolocation for I-band Imagery.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_192 The VIIRS Reflective M-band Imagery EDR software shall incorporate a computing algorithm provided for calibrated, top-of-atmosphere radiances.

Rationale: The calibrated TOA radiance is one of Reflective M-band SDR products and is used to produce Reflective M-band Imagery EDR in accordance with the JPSS VIIRS Imagery Products Algorithm Theoretical Basis Document (ATBD) (D0001-M01-S01-008).

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_193 The VIIRS Reflective M-band Imagery EDR software shall incorporate a computing algorithm provided for calibrated, top-of-atmosphere reflectances when the sensor mode is "day".

Rationale: The Reflective M-bands SDR products are produced for daytime only and are used to produce Reflective M-band Imagery EDR in accordance with the JPSS VIIRS Imagery Products Algorithm Theoretical Basis Document (ATBD) (D0001-M01-S01-008).

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_194 The VIIRS M-band Imagery EDR software shall incorporate a computing algorithm provided for mapping M-band SDR geolocation to the Ground Track Mercator grid.

Rationale: The EDR software through its algorithm must map M-band SDR geolocation to a GTM grid to produce geolocation for M-band Imagery.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_195 The VIIRS Reflective M-band Imagery EDR software shall generate the reflective M-band imagery EDR for the reflective M-bands specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <Refl M EDR><whichReflM>.

Rationale: The Reflective M-band Imagery EDRs are produced from specified Reflective M-bands. The selection of M-bands for Imagery EDR is configuration managed.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_207 The VIIRS Emissive M-band Imagery EDR software shall incorporate a computing algorithm provided for calibrated, top-of-atmosphere radiances.

Rationale: The calibrated TOA radiance is one of Emissive M-band SDR products and is used to produce Emissive M-band Imagery EDR in accordance with the JPSS VIIRS Imagery Products Algorithm Theoretical Basis Document (ATBD) (D0001-M01-S01-008).

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_208 The VIIRS Emissive M-band Imagery EDR software shall incorporate a computing algorithm provided for calibrated, top-of-atmosphere brightness temperatures.

Rationale: The calibrated TOA brightness temperature is one of Emissive M-band SDR products and is used to produce Emissive M-band Imagery EDR in accordance with the JPSS VIIRS Imagery Products Algorithm Theoretical Basis Document (ATBD) (D0001-M01-S01-008).

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

SRS.01.26_209 The VIIRS Emissive M-band Imagery EDR software shall generate the emissive M-band imagery EDR for the emissive M-bands specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <Emiss M EDR><whichEmissM>.

Rationale: The Emissive M-band Imagery EDRs are produced from specified Emissive M-bands. The selection of M-bands for Imagery EDR is configuration managed.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 2.0.0

3.2.3 Algorithm Exception Handling

SRS.01.26_147 The VIIRS NCC Imagery EDR software shall set each <FillField> to <FillValue> according to <FillCondition> specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <NCC EDR><fill>.

Rationale: The EDR software through its computing algorithm must fill the NCC Imagery EDR values based on the established fill conditions to satisfy exclusion and fill conditions.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_165 The VIIRS Reflective I-band Imagery EDR software shall set each <FillField> to <FillValue> according to <FillCondition> specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <Refl_II-3_EDR><fill>.

Rationale: The EDR software through its computing algorithm must fill the Reflective I-band Imagery EDR values based on the established fill conditions to satisfy exclusion and fill conditions.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_180 The VIIRS Emissive I-band Imagery EDR software shall set each <FillField> to <FillValue> according to <FillCondition> specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <Emiss I4-5 EDR><fill>.

Rationale: The EDR software through its computing algorithm must fill the Emissive I-band Imagery EDR values based on the established fill conditions to satisfy exclusion and fill conditions.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_196 The VIIRS Reflective M-band Imagery EDR software shall set each <FillField> to <FillValue> according to <FillCondition> specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <Refl M EDR><fill>.

Rationale: The EDR software through its computing algorithm must fill the Reflective M-band Imagery EDR values based on the established fill conditions to satisfy exclusion and fill conditions.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_210 The VIIRS Emissive M-band Imagery EDR software shall set each <FillField> to <FillValue> according to <FillCondition> specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <Emiss M EDR><fill>.

Rationale: The EDR software through its computing algorithm must fill the Emissive M-band Imagery EDR values based on the established fill conditions to satisfy exclusion and fill conditions

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

3.3 External Interfaces

3.3.1 Inputs

SRS.01.26 150 The VIIRS NCC Imagery EDR software shall incorporate inputs per Table 3-1.

Rationale: The EDR generation software must be able to receive and process the resource interaction items shown in Table 3-1 in order to produce the intended NCC Imagery EDR products.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_168 The VIIRS Reflective I-band Imagery EDR software shall incorporate inputs per Table 3-1.

Rationale: The EDR generation software must be able to receive and process the resource interaction items shown in Table 3-1 in order to produce the intended Reflective I-band Imagery EDR products.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_182 The VIIRS Emissive I-band Imagery EDR software shall incorporate inputs per Table 3-1.

Rationale: The EDR generation software must be able to receive and process the resource interaction items shown in Table 3-1 in order to produce the intended Emissive I-band Imagery EDR products.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_199 The VIIRS Reflective M-band Imagery EDR software shall incorporate inputs per Table 3-1.

Rationale: The EDR generation software must be able to receive and process the resource interaction items shown in Table 3-1 in order to produce the intended Reflective M-band Imagery EDR products.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_212 The VIIRS Emissive M-band Imagery EDR software shall incorporate inputs per Table 3-1.

Rationale: The EDR generation software must be able to receive and process the resource interaction items shown in Table 3-1 in order to produce the intended Emissive M-band Imagery EDR products.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_306 The VIIRS NCC Imagery EDR software shall input tables and coefficients specified in Table 3-1 formatted in accordance with JPSS Algorithm Specification Vol II: Data Dictionary for VIIRS Imagery (474-00448-02-26), Section 7.

Rationale: This defines the formats for Lookup Tables, and Processing Coefficients for input into the algorithm module.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

Table 3-1 and Figure 3-1 are best viewed together since they describe the processes governed by this SRS in different ways. The figure diagrams the data flowing into, out of, and within the code governed by this SRS. The table lists these same data interactions as well as all downstream dependencies for outputs from this SRS.

Each row in the table describes a single software interaction - data flowing from one software item to another. The data is listed in the first column. The second and third columns include the short name and mnemonic for the data. Blanks indicate there is no mnemonic. The fourth and fifth columns contain the SRS that generates the data product(s) in the first column, and the SRS that receives those products. The final two columns contain the actual function name in Algorithm Development Library (ADL) that produces those products, and the function that inputs those products. The SRS's titled "Ingest MSD" and "Store/Retrieve" are non-existent SRS's functioning as data handling for the IDPS. The software functions "Store Products" and "Retrieve Products" are similar non-existent functions that operate as IDPS data handling.

Figure: 3-1 VIIRS Imagery Data Flows

13

	Data Product Name	Collection Short Name	Mnemonic	Sending SRS	Receiving SRS	Sending Function	Receiving Function
1	•Image Band05	•VIIRS-I5-SDR	•SDRE-VI05-	Store/Retrieve	VIIRS Imagery	Retrieve	ProEdrViirsICh
	•GridRowCol Img	•VIIRS-IMG-GRC	C0030	(VIIRS SDR)		Products	annelImagery
	•Image_Band04	•VIIRS-I4-SDR	•None				
	•Image_Band03	•VIIRS-I3-SDR	•SDRE-VI04-				
	•Geolocation_Img_DE	•VIIRS-IMG-GEO	C0030				
	G	•VIIRS-I1-SDR	•SDRE-VI03-				
	•Image_Band01	•VIIRS-I2-SDR	C0030				
	•Image_Band02		•None				
			•SDRE-VI01-				
			C0030				
			•SDRE-VI02-				
			C0030				
2	•GridRowCol_Mod	•VIIRS-MOD-GRC	•None	Store/Retrieve	VIIRS Imagery	Retrieve	ProEdrViirsM
	•Moderate_Band04	•VIIRS-M4-SDR	•SDRE-VM04-	(VIIRS SDR)		Products	ChannelImager
	 Moderate_Band09 	•VIIRS-M9-SDR	C0030				У
	•Moderate_Band13	•VIIRS-M13-SDR	•SDRE-VM09-				
	•Geolocation_Mod_DE	•VIIRS-MOD-GEO	C0030				
	G	•VIIRS-M6-SDR	•SDRE-VM13-				
	 Moderate_Band06 	•VIIRS-M10-SDR	C0030				
	•Moderate_Band10	•VIIRS-M11-SDR	•None				
	•Moderate_Band11	•VIIRS-M2-SDR	•SDRE-VM06-				
	•Moderate_Band02	•VIIRS-M3-SDR	C0030				
	•Moderate_Band03	•VIIRS-M7-SDR	•SDRE-VM10-				
	•Moderate_Band07	•VIIRS-M14-SDR	C0030				
	•Moderate_Band14	•VIIRS-M15-SDR	•SDRE-VM11-				
	•Moderate_Band15	•VIIRS-M12-SDR	C0030				
	•Moderate_Band12	•VIIRS-M5-SDR	•SDRE-VM02-				
	•Moderate_Band05	•VIIRS-M1-SDR	C0030				
	•Moderate_Band01	•VIIRS-M8-SDR	•SDRE-VM03-				
	•Moderate_Band08	•VIIRS-M16-SDR	C0030				
	•Moderate_Band16		•SDRE-VM07-				
			C0030				
			•SDRE-VM14-				
			C0030				

 Table: 3-1
 Systems Resource Flow Matrix: VIIRS Imagery

	Data Product Name	Collection Short Name	Mnemonic	Sending SRS	Receiving SRS	Sending Function	Receiving Function
			•SDRE-VM15- C0030 •SDRE-VM12- C0030 •SDRE-VM05- C0030 •SDRE-VM01- C0030 •SDRE-VM08- C0030 •SDRE-VM16-				
3	•DayNight_Band •GridRowCol_DNB •Geolocation_DNB_DE G	•VIIRS-DNB-SDR •VIIRS-DNB-GRC •VIIRS-DNB-GEO	C0030 •SDRE-VDNB- C0030 •None •None	Store/Retrieve (VIIRS SDR)	VIIRS Imagery	Retrieve Products	ProEdrViirsNc cImagery
4	•VIIRS_GTM_EDR_D QTT_2 •VIIRS_GTM_EDR_D QTT_3 •VIIRS_GTM_EDR_D QTT_1 •VIIRS_GTM_EDR_D QTT_5 •VIIRS_GTM_EDR_D QTT_4	•VIIRS-I2-IMG-EDR- DQTT •VIIRS-I3-IMG-EDR- DQTT •VIIRS-I1-IMG-EDR- DQTT •VIIRS-I5-IMG-EDR- DQTT •VIIRS-I4-IMG-EDR- DQTT	•DP_NU-LM2030- 000 •DP_NU-LM2030- 000 •DP_NU-LM2030- 000 •DP_NU-LM2030- 000 •DP_NU-LM2030- 000	Anc and Aux Data	VIIRS Imagery	Auxiliary Data - Spacecraft Data and LUTs	ProEdrViirsICh annelImagery
5	•NCC_GVVSLE_LUT •NCC_Thresholds •NCC_Lunar_BRDF_L UT •NCC_GVVSSE_LUT •NCC_Solar_BRDF_L UT	•VIIRS-Ga-Val-Vs- Scene-Lun-Elev-LUT •VIIRS-NCC-EDR-AC •VIIRS-Lun-BRDF- LUT •VIIRS-Ga-Val-Vs- Scene-Sol-Elev-LUT •VIIRS-Sol-BRDF- LUT	•None •DP_NU-LM2020- 023 •NP_NU-LM0233- 015 •None •NP_NU-LM0233- 017	Anc and Aux Data	VIIRS Imagery	Auxiliary Data - Spacecraft Data and LUTs	ProEdrViirsNc cImagery

	Data Product Name	Collection Short Name	Mnemonic	Sending SRS	Receiving SRS	Sending Function	Receiving Function
6	•VIIRS NCC EDR D	•VIIRS-NCC-EDR-	•DP NU-LM2030-	Anc and Aux	Imagery	Auxiliary Data	ProEdrViirsNc
	QTT	DQTT	000	Data		- Spacecraft	cImagery
						Data and LUTs	
7	•Lunar_Phase	•VIIRS-LUN-Phase-	•NP_NU-LM0233-	Anc and Aux	VIIRS Imagery	Dynamic	ProEdrViirsNc
		LUT	016	Data		Ancillary Data	cImagery
8	•VIIRS_NCC_EDR_D	•VIIRS-NCC-EDR-	•DP_NU-L00090-	VIIRS Imagery	Store/Retrieve	ProEdrViirsNc	Store Products
	QN	DQN	001			cImagery	to DMS
	•GTM_Imagery_Ncc_E	•VIIRS-NCC-EDR	•EDRE-IMAG-				
	DR	•VIIRS-NCC-EDR-	C1030				
	 Imagery_NCC_Geoloc 	GEO	•None				
9	•GTM_Imagery_Mod_	•VIIRS-M6-EDR	•EDRE-VMOD-	VIIRS Imagery	Store/Retrieve	ProEdrViirsM	Store Products
	EDR_6	•VIIRS-MOD-GTM-	C0030			ChannelImager	to DMS
	•Imagery_MChannel_G	EDR-GEO	•None			У	
	eoloc	•VIIRS-M2-EDR	•EDRE-VMOD-				
	•GTM_Imagery_Mod_	•VIIRS-M5-EDR	C0030				
	EDR_2	•VIIRS-M1-EDR	•EDRE-VMOD-				
	•GTM_Imagery_Mod_	•VIIRS-M4-EDR	C0030				
	EDR_5	•VIIRS-M3-EDR	•EDRE-VMOD-				
	•GIM_Imagery_Mod_	•VIIRS-M7-EDR	C0030				
	EDR_I	•VIIRS-M8-EDR	•EDRE-VMOD-				
	•G1M_Imagery_Mod_	•VIIRS-M9-EDR					
	EDR_4	•VIIRS-MIU-EDR	•EDRE-VMOD-				
	•G1M_Inagery_Wod_	•VIIRS-MIT-EDR					
	CTM Imagany Mod	•VIIRS-M12-EDR	CO020				
	FDP 7	•VIIRS-M13-EDR	•EDRE VMOD				
	•GTM Imagery Mod	•VIIRS-M14-EDR	C0030				
	FDR 8	•VIIRS-M15-LDR	•FDRF-VMOD-				
	•GTM Imagery Mod		C0030				
	EDR 9		•EDRE-VMOD-				
	•GTM Imagery Mod		C0030				
	EDR 10		•EDRE-VMOD-				
	•GTM Imagery Mod		C0030				
	EDR 11		•EDRE-VMOD-				
	•GTM Imagery Mod		C0030				
	EDR_12						

	Data Product Name	Collection Short Name	Mnemonic	Sending SRS	Receiving SRS	Sending Function	Receiving Function
	•GTM_Imagery_Mod_		•EDRE-VMOD-				
	EDR_13		C0030				
	•GTM_Imagery_Mod_		•EDRE-VMOD-				
	EDR_14		C0030				
	•GTM_Imagery_Mod_		•EDRE-VMOD-				
	EDR_15		C0030				
	•GTM_Imagery_Mod_		•EDRE-VMOD-				
	EDR_16		C0030				
10	•VIIRS_GTM_EDR_D	•VIIRS-I3-IMG-EDR-	DP_NU-L00090-	VIIRS Imagery	Store/Retrieve	ProEdrViirsICh	Store Products
	QN_3	DQN	001			annelImagery	to DMS
	•GTM_Imagery_Img_E	•VIIRS-I3-IMG-EDR	•EDRE-IMAG-				
	DR_I3	•VIIRS-I1-IMG-EDR	C0030				
	•GTM_Imagery_Img_E	•VIIRS-I5-IMG-EDR	•EDRE-IMAG-				
	DR_I1	•VIIRS-IMG-GTM-	C0030				
	•GTM_Imagery_Img_E	EDR-GEO	•EDRE-IMAG-				
	DR_I5	•VIIRS-I1-IMG-EDR-	C0030				
	•Imagery_IChannel_Ge	DQN	•None				
	oloc	•VIIRS-I4-IMG-EDR	•DP_NU-L00090-				
	•VIIRS_GTM_EDR_D	•VIIRS-I4-IMG-EDR-	001				
	QN_1	DQN	•EDRE-IMAG-				
	•GTM_lmagery_lmg_E	•VIIRS-I2-IMG-EDR	C0030				
	DR_14	•VIIRS-I2-IMG-EDR-	•DP_NU-L00090-				
	•VIIRS_GTM_EDR_D	DQN	001				
	QN_4	•VIIRS-I5-IMG-EDR-	•EDRE-IMAG-				
	•GTM_Imagery_Img_E	DQN	C0030				
	DR_12		•DP_NU-L00090-				
	•VIIKS_GIM_EDK_D						
	UN_2		•DP_NU-L00090-				
	•VIIKS_GTM_EDR_D		001				
	QN_5						

3.3.2 Outputs

SRS.01.26_148 The VIIRS NCC Imagery EDR software shall generate the near-constant contrast imagery EDR for the day/night band in conformance with the XML format file in Attachment A.24 of the JPSS Algorithm Specification Vol II: Data Dictionary for VIIRS Imagery (474-00448-02-26).

Rationale: The product profile must conform to the XML format file.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_166 The VIIRS Reflective I-band Imagery EDR software shall generate the reflective I-band imagery EDR for I1, I2, and I3 in conformance with the XML format file in Attachments A.1 - A.3 of the JPSS Algorithm Specification Vol II: Data Dictionary for VIIRS Imagery (474-00448-02-26).

Rationale: The product profile must conform to the XML format file.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_149 The VIIRS NCC Imagery EDR software shall use the geolocation for the DNB SDR.

Rationale: The geolocation for NCC Imagery EDR is based on the DNB SDR geolocation.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_167 The VIIRS I-band Imagery EDR software shall use the geolocation for the I-band SDR.

Rationale: The geolocation for I-band Imagery EDR is based on the I-band SDR geolocation.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_181 The VIIRS Emissive I-band Imagery EDR software shall generate the emissive I-band imagery EDR for I4 and I5 in conformance with the XML format file in Attachments A.4 and A.5 of the JPSS Algorithm Specification Vol II: Data Dictionary for VIIRS Imagery (474-00448-02-26).

Rationale: The product profile must conform to the XML format file.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_197 The VIIRS Reflective M-band Imagery EDR software shall generate the reflective M-band imagery EDR, in conformance with the XML format file in Attachments A.7 - A.22 of Vol II of the JPSS Algorithm Specification Vol II: Data Dictionary for VIIRS Imagery (474-00448-02-26).

Rationale: The product profile must conform to the XML format file.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_198 The VIIRS M-band Imagery EDR software shall use the geolocation for the M-band SDR.

Rationale: The geolocation for M-band Imagery EDR is based on the M-band SDR geolocation.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_211 The VIIRS Emissive M-band Imagery EDR software shall generate the emissive M-band imagery EDR, in conformance with the XML format file in Attachment A.7-A.22 of the JPSS Algorithm Specification Vol II: Data Dictionary for VIIRS Imagery (474-00448-02-26).

Rationale: The product profile must conform to the XML format file.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

3.4 Science Standards

Not applicable.

3.5 Metadata Output

Not applicable.

3.6 Quality Flag Content Requirements

SRS.01.26_157 The VIIRS NCC Imagery EDR software shall report for each <FlagScope> quality flags using <FlagLogic> as specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <NCC_EDR><QF>.

Rationale: Quality Flags must be generated based on the established flag conditions, logic, and format.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_158 The VIIRS NCC Imagery GEO software shall report for each <FlagScope> quality flags using <FlagLogic> as specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <NCC GEO><QF>.

Rationale: Quality Flags must be generated based on the established flag conditions, logic, and format.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_174 The VIIRS Reflective I-band Imagery EDR software shall report for each <FlagScope> quality flags using <FlagLogic> as specified in the SRSPF <Refl_I1-3_EDR><QF>.

Rationale: Quality Flags must be generated based on the established flag conditions, logic, and format.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_175 The VIIRS I-band Imagery GEO software shall report for each <FlagScope> quality flags using <FlagLogic> as specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <IbandGEO><QF>.

Rationale: Quality Flags must be generated based on the established flag conditions, logic, and format.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_188 The VIIRS Emissive I-band Imagery EDR software shall report for each <FlagScope> quality flags using <FlagLogic> as specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <Emiss_I4-5_EDR><QF>.

Rationale: Quality Flags must be generated based on the established flag conditions, logic, and format.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_204 The VIIRS M-band Imagery GEO software shall report for each <FlagScope> quality flags using <FlagLogic> as specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <MbandGEO><QF>.

Rationale: Quality Flags must be generated based on the established flag conditions, logic, and format.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

3.7 Data Quality Notification Requirements

SRS.01.26_151 The VIIRS NCC Imagery EDR software shall send data quality notifications to the operator according to logic specified in the JPSS Algorithm Specification Vol IV: SRSPF for VIIRS Imagery (474-00448-04-26) <NCC_EDR> <notification>.

Rationale: Notifications must be generated and sent based on the established logic and conditions.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

3.8 Adaptation

Not applicable.

3.9 **Provenance Requirements**

Not applicable.

3.10 Computer Software Requirements

Not applicable.

3.11 Software Quality Characteristics

Not applicable.

3.12 Design and Implementation Constraints

SRS.01.26_143 The Common Ground System shall execute the top-of-atmosphere pseudo albedo algorithm.

Rationale: The CGS must incorporate algorithm changes that are supplied by the algorithm vendor.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_159 The Common Ground System shall execute the top-of-atmosphere radiance algorithm.

Rationale: The CGS must incorporate algorithm changes that are supplied by the algorithm vendor.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_160 The Common Ground System shall execute the top-of-atmosphere reflectance algorithm.

Rationale: The CGS must incorporate algorithm changes that are supplied by the algorithm vendor.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_161 The Common Ground System shall execute the Ground Track Mercator mapping algorithm.

Rationale: The CGS must incorporate algorithm changes that are supplied by the algorithm vendor.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_176 The Common Ground System shall execute the top-of-atmosphere radiance algorithm.

Rationale: The CGS must incorporate algorithm changes that are supplied by the algorithm vendor.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_177 The Common Ground System shall execute the top-of-atmosphere brightness temperature algorithm.

Rationale: The CGS must incorporate algorithm changes that are supplied by the algorithm vendor.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_189 The Common Ground System shall execute the top-of-atmosphere radiance algorithm.

Rationale: The CGS must incorporate algorithm changes that are supplied by the algorithm vendor.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_190 The Common Ground System shall execute the top-of-atmosphere reflectance algorithm.

Rationale: The CGS must incorporate algorithm changes that are supplied by the algorithm vendor.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_191 The Common Ground System shall execute the Ground Track Mercator mapping algorithm.

Rationale: The CGS must incorporate algorithm changes that are supplied by the algorithm vendor.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_205 The Common Ground System shall execute the top-of-atmosphere radiance algorithm.

Rationale: The CGS must incorporate algorithm changes that are supplied by the algorithm vendor.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

SRS.01.26_206 The Common Ground System shall execute the top-of-atmosphere brightness temperature algorithm.

Rationale: The CGS must incorporate algorithm changes that are supplied by the algorithm vendor.

Mission Effectivity: S-NPP, JPSS-1, JPSS-2

Block Start: 2.0.0 Block End: 3.0.0

3.13 Personnel Related Requirements

Not applicable.

3.14 Training Requirements

Not applicable.

3.15 Logistics Related requirements

Not applicable.

3.16 Other Requirements

Not applicable.

3.17 Packaging Requirements

Not applicable.

3.18 Precedence and Criticality

Not applicable.

Appendix A. Requirements Attributes

The Requirements Attributes can be found in the VCRMs at Ground > Mission System Engineering > Ground SEIT Unrestricted > VCRM

https://jpss.gsfc.nasa.gov/sites/ground/MSE/9/Forms/AllItems.aspx?RootFolder=%2Fsites%2Fgr ound%2FMSE%2F9%2FVCRM&FolderCTID=0x012000D0555EA1A211E64A9A7DE7CBCE 72DE8B&View=%7B4267AEFE%2D7E8B%2D402D%2D919D%2D41BED55BA4E7%7D