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Outline
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q Application II : Near-real Time Global Drought Monitoring

q R2O : US Drought Portal (Drought.gov)

q Transition to Cloud Computing Environment

q Conclusions
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q Climate Data Record

Satellite Precipitation Products (SPPs)

• “A CDR is a time series of scientifically-based measurements of the Earth’s environment with 
sufficient length, consistency, and continuity to assess and measure climate variability and 
change.”

• CMORPH (gridded, PMW & in-situ) (NOAA CPC P. Xie)
§ Global (60N-60S), 30-min, 8x8-km, Daily, 0.25x0.25-deg, 1998-Present, Interim & Final 

• PERSIANN-CDR (gridded, IR & in-situ) (UC-Irvine S. Sorooshian)
§ Global (60N-60S), Daily, 0.25x0.25-deg, 1983-Present, Final

• GPCP (gridded, IR & in-situ) (UMD R. Adler)
§ Global, Daily, 1x1-deg, 1997-Present, Final

q Precipitation CDRs

• Available @ https://www.ncdc.noaa.gov/cdr and via Amazon Web Services

• TMPA (gridded, multi-satellite precipitation analysis, PMW, IR & in-situ) (NASA G. Huffman)
§ Global (50N-50S), 3-hr, Daily, 0.25x0.25-deg, 1988-2019, Interim & Final 

• IMERG (gridded, multi-satellite, PMW, IR & in-situ) (NASA G. Huffman)
§ Global, 30-min, Daily, 0.1x0.1-deg, 2000-Present, Interim & Final 

q Other SPPs

https://www.ncdc.noaa.gov/cdr
https://registry.opendata.aws/noaa-cdr-atmospheric/
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CDR Evaluation: Warm/Cold Precipitation  
Bias

➽ Higher biases (overestimation) for PERSIANN and GPCP in winter (DJF) in the Western US.

➽ CMORPH displays rainfall underestimation in winter (DJF) and for daily T <0∘C.

JJA DJF T<0∘CYEAR

Prat and Nelson 2023, J. Hydrometeorology 

1.12 1.11 1.26

0.99 1.11 0.82

1.21 1.18 1.36
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CDR Performance vs. USCRN

Conditional Unconditional 
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CDR Evaluation: Extreme Precipitation : 95th

➽ All SPPs underestimate extreme precipitation from 19% to 48% at the 95th percentile.

USCRN

CMORPH-CDR GPCP

Prat and Nelson 2021, J. Hydrometeorology 

PERSIANN-CDR

32.6 mm/day

23.9 mm/day26.7 mm/day

16.9 mm/day
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Global TC Contribution : TMPA 3B42
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Examples of recent studies using gridded (level III) satellite precipitation 
products (SPPs) for applications in relationship with extreme precipitation

Prat and Nelson 2020, Satellite precipitation measurements and extreme rainfall. 
In Satellite Precipitation Measurement, Springer 
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q Goals

Near-real Time Drought Monitoring

• Compute a daily Standardized Precipitation Index (SPI) in near-real time 
based on high-resolution in-situ and satellite precipitation products.

• Provide near-real time drought monitoring resources to the public.

• CMORPH-CDR (gridded multi-satellite precipitation, PMW & in-situ)
Global, Daily, 0.25x0.25-deg, 1998-present, 1-day (ICDR), 4-month (CDR)

• NClimGrid (gridded in-situ precipitation, based on GHCN-D) 
CONUS, Daily, 5x5-km, 1950-present, 3-day (prelim), 1-month (final)

• IMERG (multi-satellite & in-situ) (upcoming)
Global, Daily, 0.1x0.1-deg, 2000-present, 12-hr (late run), 3.5-month (final)

q Precipitation Datasets

• SPI Algorithm (2-parameter Gamma & 3-parameter Pearson distributions)
• 30-, 90-, 180-, 270-, 365-, and 730-day daily SPI (rainfall accumulation)
• Droughts are characterized as Mild (0 ≥ SPI ≥ -0.99), Moderate (-1 ≥ SPI ≥ -

1.49), Severe (-1.5 ≥ SPI ≥ -1.99) , and Extreme (SPI ≤ -2).

q Methods
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𝛽 – Scale 𝜉 – Location 

Pearson III Distribution Parameters (CMORPH)
90-Day

𝛾 – Skewness 

Location (𝜉), Scale 
(𝛽), and Skewness 
(𝛾) computed on a 

1998-2021 reference 
period

July 1st
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NClimGrid-SPI on July 15th 2012 (5x5-km) 
(30-, 180-, 270-day SPI) 2012-2013 North American drought 

CMORPH-SPI on July 15th 2012 (0.25x0.25-deg)
(30-, 180-, 270-day SPI) 
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CMORPH-SPI : 180-day
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U.S. Drought Portal (Drought.gov) : NIDIS/NCEI 
CMORPH-SPI is available in 

the NIDIS Drought.gov portal to 
display global drought conditions. 
The 3-month Standardized 
Precipitation Index (SPI) and is 
updated daily with a delay of 2-3 
days: 
https://www.drought.gov/internati
onal

Current drought 
conditions. Figure displaying 
the US Drought Monitor (top 
layer on the left figure) on top 
of the 90-day CMORPH-SPI 
(right figure).

Current drought conditions
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Cloud-based Computing
q Why Convert to Cloud Resources ?

Ø Very slow computation for a daily process
Ø Memory intensive process

• Holds loaded data in global arrays
• Pre- and post-processing involve very large sets of files that don’t fit well 

into memory, even on large servers
Ø Output is enormous and difficult for users to access

• For CMORPH a 20GB file, produces 6x20GB SPI files and a 30GB 
parameter file

q Progression to Cloud-based Computing
Ø Store data on cloud servers
Ø Aggressive subdivision of input data

• 48x48 chunks of CMORPH data to 300 files, 80MB apiece
Ø Containerization of SPI code package

• Known environment that can be copied anywhere via Docker
Ø Run hundreds of Lambda functions

• Simultaneous computation of accumulation, parameters, and SPI domain-
wide
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Architecture for SPI Cloud Computation

• Using AWS resources for SPI computation (i.e. Kubernetes, S3 …).
• AWS Fargate is a serverless container manager that scales the workers for parallel processing.

➩ The DASK environment allows for massive parallel processing and to rapidly scale resources from
zero to a cluster of up to 500 workers and back to zero.

• AWS S3 is used for data storage
➩ S3 allows for fast parallel data access. All data including input (SPP datasets), intermediate
(Accumulation, Distribution Parameters), and output files (SPI) are stored on S3.

• SPI source code is in GitLab (Python). Jupyterhub is the scientific computing environment.
• Combining and optimizing all pieces to work together ➩ Framework (i.e. Kubernetes) allows the

code to be transferable to other cloud environments (Google, Microsoft Azure).
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Conclusions
q Near-real time daily global SPI derived from CMORPH is available on Drought.gov

q Extending to IMERG (late, final runs) for a higher resolution SPI (i.e. 6-fold increase).

q Fast processing time: Adaption to the cloud computing environment. 
Ø CMORPH-SPI computation is reduced by 2 orders of magnitude (9-hr to 5-min)

Ø Ultimately the daily updates will take less than 1-min

q Flexible framework: Use of other precipitation products (SPPs, radar, in-situ) and 
other data sets (temperature, ET, groundwater) to derive more complex droughts 
indices (SPEI, agricultural drought, hydrological drought). 

q SPP requirements & improvements: It depends on the application. 

Ø TCs monitoring: Ability to capture extreme precipitation, low latency (minutes), 
high resolution. 

Ø Drought monitoring: More sensitive to average quantities (anomalies), daily 
updates are sufficient (using interim product), cold precipitation retrieval is 
important at high latitudes and at high elevation. 

https://www.drought.gov/international

