“Parametric Rainfall Algorithms from
Microwave sensors - what’s ready and what’s
not”
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The Goddard Profiling Algorithm

v¢ Running operationally at NASA for TRMM and GPM

v¢ Uses a Bayesian framework with a common a—priori dgtabase
for all sensors. Readily adaptable for any new sensor

v¢ Recently changed to ML in lieu of the Bayesian inversion. This
exploits the prior data slightly better than the Bayesian scheme.



The GPM radiometer algorithm — GPROF

Step 1: Use GPM CORRA product to derive
set of “Observed” profiles that define an a-
priori database of possible rain structures.

Step2: Compare observed Tb to
Database Tb. Select and averag
matching pairs
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Retrieval performance (surface precipitation)
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Assumptions/Caveats

For GMI, training data is constructed CORRA profiles and observed Tb.

For non-GMI sensors, training data is constructed from CORRA profiles
and computed Tb. Implicit assumption is that CORRA produces
hydrometeor scenes that fully reproduce GMI observations and thus can
be adapted to al similar sensors.

Even if CORRA is perfect, CORRA reverts to reanalysis if no echo is
detected. Light rain (<0.2 mm/hr) and snow (except when heavy) are not
retrieved. GPROF uses MIRS in light rain and empirical MRMS databases

in ShOW



GMI Simulated vs. GMI Observed Tbs
Using COMBINED (Raining

and MIRS (Non-Raining
October 1 - 10, 2018
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Uses MIRS emissivities over sea-ice

surfaces




Surface Precipitation

Surface Precipitation

GMI

GPROF 2017 Version 1 GANAL GPM GMI
Global: 2,642 NH: 2833 SH:

One year of GP

March 2015 — February 2016
2.454

AMSR2

GPROF 2017 Version 1 GANAL GCOMW1 AMSR2
Global: 2622 NH: 2771 SH:

March 2015 — February 2016
2474

Surface Presipitation

M data

SSMIS

GPROF 2017 Version 1 GANAL F17 SSMIS March 2015 — February 2016
Global: 2683 NH: 2922 SH: 2465

MHS

GPROF 2017 Version 1 GANAL NDAA1E MHS March 2015 — February 2016
Global: 2764 NH: 2936 SH: 2544




The effective resolution of GMI GPROF
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A Machine Learning Algorithm

Trained on MRMS for snow
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MRMS Snowfall (mm)

MRMS vs in-situ snowfall

MRMS vs GHCN Snowfall

80 R=0.366 '
Y= 0.27% + 0.11 GHCN: 0.46 mm
- MRMS: 0.23 mm
60¢ s *? .
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GHCN Snowfall (mm)

MRMS and GHCN
daily snowfall
matchups for the
Dakotas. Correlation
is 0.37. Average
MRMS daily snowfall
is half of GHCN.
Many points where
MRMS reports Omm
snowfall and GHCN
has >0mm snowfall.
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Snow accumulation for WY2017 - 2021



Research Needs

il

» Parametric Algorithms are quite mature and probably
need little development.

» Prior/training data — CORRA, MIRS, Snow etc. Having
a "curated” database or training data that can predict
Tbs for all new sensors is essential for parametric
retrievals, and the key to an “"Enterprise” solution that
does not change with constellation makeup. Thisis a
STAR activity rather than a satellite need.



Sensor Needs

If precipitation is changing, will need radar/radiometer pairs for
training data in the future. JAXA? Can use current GPM under
static climate assumptions.

Sensors as simple as MHS (89, 165, 183 GHz) are demonstrably
better than IR for precipitation. Large FOV not a demonstrable
disadvantage at this time. Merged products can speak better to
advantage of increased sampling.

Lower frequency help increase effective resolution over water but
not land.

Higher frequency (v > 183 GHz) may be an advantage for snow but
not demonstrated on any systematic basis.



Validation and Ancillary Data
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While all decent algorithms are unbiased relative to training data, regional
biases exist. They make validation difficult. Biases result from an
algorithm’s inability to distinguish scenes with similar observations but
different surface rainfall rates. We will need ancillary data to distinguish.
What to include is probably the only active area of algorithm research.



