

Challenges in remote sensing hydrometeorology

Example: deterministic QPE... but indirect and often underdetermined observations and precipitation

meteor Distributions with Equivalent Reflectivity but Different Rainfall Rates

rainfall rate

Challenges in remote sensing hydrometeorology

- Remote sensing, atmospheric sciences, and hydrology:
 - precipitation variability is ignored;
 - partially resolved / mixtures of precipitation processes;
 - limited characterization of extremes;
 - impacts hazard applications.
- Classical parameterization approach is insufficient: deterministic, based on / depicting averaged properties.

Moving forward: increase the information content

Use uncertainty as an integral part of precipitation estimation

- → data fusion
- → data assimilation
- → water budget

> Quantify the likelihood of weather and water extremes

4

- hazard information
- →risk analysis

Way forward: Probabilistic QPE

- Depicts the most likely value (→ bias reduction)
- Quantifies certainty bounds (→ data fusion & assimilation)
- Quantifies the likelihood of extreme cases (→ risk analysis)

Rainfall Rate

10

15

20

25

Reflectivity

Rainfall rate (mm/h)

Kirstetter, P.E., et al., 2015: Probabilistic Precipitation Rate Estimates with Ground-based Radar Networks. *Water Resources Research*, 51, 1422–1442. doi:10.1002/2014WR015672

Space outside the deterministic relation = space of error

Probabilistic relation = possible precipitation rates

Estimating distributions of possible precipitation rates

Hydrometeor Distributions with Equivalent Reflectivity but Different Rainfall Rates

Same reflectivity
$$Z_{\infty} = \int_{0}^{\infty} D^{6}N(D)dD$$

2 different rain rates $R_{\infty} = \frac{\pi}{6}\int_{0}^{\infty} w_{t}D^{3}N(D)dD$

Distribution of precipitation rates: Snow

Deterministic Z-S relations: compilation

Snow PQPE

• Provide the PDF of precipitation rates at measurement scale

Most likely value – mitigate bias

- Provide the PDF of precipitation rates at measurement scale
- Depict the most likely value (deterministic users & applications)

- Provide the PDF of precipitation rates at measurement scale
- Depict the most likely value (deterministic users & applications)
- Quantify certainty bounds (data fusion & assimilation)

Monitoring the likelihood of extremes - hazards

- Provide the PDF of precipitation rates at measurement scale
- Depict the most likely value (deterministic users & applications)
- Quantify certainty bounds (data fusion & assimilation)
- Quantify the likelihood of extreme cases (risk analysis) Kirstetter, P.E., et al., 2015: Probabilistic Precipitation Rate Estimates with Ground-based Radar Networks. *Water Resources Research*, 51, 1422–1442. doi:10.1002/2014WR015672

PQPE expectation

Uncertainty estimates

Probability of exceeding threshold (10 mm/h)

Applications: risk analysis

Probability of exceeding threshold (25 mm/h)

Applications: risk analysis

Dual-Frequency Precipitation Radar algorithm

Objective: estimate the profile of microphysics (PSD at each gate) and the surface precipitation rate R

- Space radar algorithm fits 1D vertical model of precipitation microphysics to the observed profile of reflectivity
- Assumes microphysics: convective / stratiform
- Assumes primarily uniform precipitation in the field of view
- Challenge: get the microphysics right
- Challenge: deal with unresolved variability

Dual-frequency Precipitation Radar QPE relations

Rainfall – mass weighted mean diameter relation: R-Dm

• stratiform: $R_{DPR} = 0.401 \epsilon^{4.649} D_m^{6.131} \epsilon$: adjustment parameter

 \odot convective: $R_{DPR} = 1.370 \epsilon^{4.258} D_m^{5.420}$

Dm: mean diameter

PQPE approach

○ stratiform: $R_{ref} ⇔ 0.401 ε^{4.649} D_m^{6.131}$

 $\bigcirc \ \ \text{convective:}$ R_{ref} ⇔ 1.370 ε^{4.258} D_m^{5.420}

Dual-frequency Precipitation Radar Conditional biases with ε and Dm

DPR QPE = f (ε , D_m, precipitation type, ...)

PDF(R_{ref}) = f (ϵ , D_{m} , precipitation type, ...)

Dual-frequency Precipitation Radar scores

DPR PQPE = f (reflectivity, precipitation type, incidence angle)

	brightband		stratiform		convective	
	Bias (%)	Correlation	Bias (%)	Correlation	Bias (%)	Correlation
DPR	+0.46	0.54	-21.0%	0.35	-8.9%	0.37
PQPE	-0.32%	0.61	-3.3%	0.43	+2.9%	0.52

→ Improving both bias and correlation cannot be achieved by post-processing

Space-based Precipitation Radar Probabilistic QPE

DPR QPE = f (reflectivity,

precipitation type,

incidence angle, Z-R relation, Non Uniform Beam Filling,...)

Storm system at 12:30 UTC on 18 April 2016 near Houston

Space-based Precipitation Radar Probabilistic QPE

DPR PQPE = f (reflectivity, precipitation type, incidence angle)

Storm system at 12:30 UTC on 18 April 2016 near Houston

Space-based Precipitation Radar Probabilistic QPE

DPR PQPE = f (reflectivity, precipitation type, incidence angle)

Storm system at 12:30 UTC on 18 April 2016 near Houston

Dual-frequency Precipitation Radar Conditional biases with ε and Dm

Space-based radars A multi-parameter estimation

Space-based radars A multi-parameter estimation

Dual-frequency Precipitation Radar scores

	brightband		stratiform		convective	
	3	D _m	3	D _m	3	D _m
DPR	4.649	6.131	4.649	6.131	4.258	5.420
PQPE	2.321	3.941	1.833	3.165	1.647	3.365
	Bias	Correlation	Bias	Correlation	Bias	Correlation
DPR	+0.46	0.54	-21.0%	0.35	-8.9%	0.37
PQPE	-0.32%	0.61	-3.3%	0.43	+2.89%	0.52

Spaceborne radars: convective contribution

Spaceborne radars and PMW: convective contribution

GPROF and IMERG: convective contribution

- Currently GPROF does not condition the retrieval by precipitation types → systematic error propagates to IMERG
- Demonstrated the interest of accounting for convective contribution in GPROF

GPROF

IMERG diagnostic analysis: convective index

PMW: convective contribution

- currently GPROF does not condition the retrieval by precipitation types (convective/stratiform)
- Can we see an improvement in precipitation rate estimates if GPROF correctly estimates the convective contribution?
- → Develop a convective index for GPROF

	Gopalan (2010)	Model in progress
Correlation	0.31	0.55

→ Petkovic et al. (2019)

PMW: convective contribution

- currently GPROF does not condition the retrieval by precipitation types (convective/stratiform)
- Can we see an improvement in precipitation rate estimates if GPROF correctly estimates the convective contribution?
- → Develop a convective index for GPROF

	Gopalan (2010)	Model in progress
Correlation	0.31	0.55

→ Kirstetter et al. (2020)

Exponential growth of observations

Temporal Resolution

GOES-16: 1-min GOES13: 15-min

Animation Source: <u>http://www.nhc.noaa.gov/</u>

Spectral Resolution

→ efficiently utilizing this wealth of information to target precipitation

Current operational precipitation retrievals

 → Satellite precipitation has been deterministically computed despite the underconstrained relation between satellite measurements and surface precipitation rate.
→ Probabilistic QPE

HYDROLOGY & WATER SECURITY PROGRAM

Current operational precipitation retrievals

38

Advanced Techniques

Is uncertainty in SCaMPR propagating from its reference MWCOMB?

Current operational precipitation retrievals

Rainfall rate (mm/h)

Kirstetter et al., 2018: Probabilistic Precipitation Rate Estimates with Space-based Infrared Sensors. *Quarterly Journal of the Royal Meteorological Society*.doi: 10.1002/qj.3243

Probabilistic QPE - risk

Kirstetter et al., 2018: Probabilistic Precipitation Rate Estimates with Space-based Infrared Sensors. *Quarterly Journal of the Royal Meteorological Society*.doi: 10.1002/qj.3243

Probabilistic QPE

Probabilistic QPE: perspectives

Probabilistic Quantitative Precipitation Estimates:

- ➔ Ground-based radars
- ➔ Space-based radars
- → IR-based (satellite) component of GPM

Other applications/developments in:

- ➔ GOES16
- ➔ snow water equivalent
- ➔ flash flood risk monitoring

Communicating probabilistic information is still an outstanding challenge.

14th International Precipitation Conference

Where, when: National Weather Center, Norman, Oklahoma – June 5-9, 2023

Theme: Emerging directions in precipitation observations, estimation, applications, forecasting, and climate projections.

Website: IPC14.org

Pre-conference online workshops:

- → Early Career and Students
- ➔ India / South Asia
- ➔ possibly: Atmosphere Observing System

Short courses

This work is made possible through support by NOAA and NASA Ground Validation program and Precipitation Measurement Mission program.

47

Overview of the Multi-Radar Multi-Sensor System (MRMS)

GPM & GV-MRMS: bridging orbital Level-2 and gridded Level-3 precipitation

Spaceborne radars

DPR PQPE = f (reflectivity, microphysics, precipitation type, incidence angle)

HYDROHUT icane Matthew at 09:15 UTC on 08 October 2016 in North Carolina