LEO Precip Products That Aid Forecaster's in Monitoring/Tracking **Heavy Precipitation** R Their Needs in the Future

Aaron Jacobs, Senior Service Hydrologist/Meteorologist

National Weather Service Forecast Office, Juneau Alaska

Talk Outline

- NWS WFO Scale (Juneau Alaska)
 - Area of responsibility
 - Radar Coverage
 - Southeast Alaska precipitation
 - Impacts that need flood or winter weather products (Watch, Warning, Advisory) and IDSS from WFO
- Polar MV products available to Juneau's forecasters
 - CIMMS MIMIC TPW, MIRS TPW, CIRA ALPW
 - MiRS, GPM, CMOPRH2, GCOM
- Users needs in the future from LEO MV precip products.

WFO Juneau Forecast Area

Area of Responsibility: 155,000 sq mi (3rd Largest in NWS)

75 % of Forecast Area is covered by Water

WFO Juneau Forecast Area Terrain

WFO Juneau Forecast Area Land of Preciptation

Radar Coverage in Alaska is Limited

NEXRAD Coverage Below 10,000 Feet AGL

NEATHER SER LAN***

- NWS Rain/Flood monitoring:
 - assumes WSR-88D at WFO
 - AWIPS FFMP tool designed for radar.
- Effective radar coverage in Alaska greatly reduced:
 - Only 7 radars (over 140 in CONUS).
 - Most Alaskan radars and some western CONUS have beam blockage.
 - Accumulated QPE range 124 nm.

Flooding & Debris Flow – Northern SE Alaska

Polar Satellite Precipitable Water Products

Mirs TPW

- CSPP MiRS package for DB
 Multiple satellites: 5 received by GINA (NOAA-21 soon)
 Frequency: 12-20 passes/day S
- to N
- Low latency: Avg ~28 min
 Resolution: 15-25 km (sensor)
- dependent)
- Considerations:
 - Best with mosaic composite to track moisture plumes
 - O Greater uncertainty:
 over land

 - Snow/ice
 - heavy precip

Polar Satellite Precipitable Water Products

MIMIC TPW (CIMSS)

- Morphing technique to blend multiple satellite sources.
 Smooth propagation and evolution of features
- Frequency: hourly
- Coverage: global
- Considerations:
 - Recent passes may not be included.
 - Greater uncertainty:
 - over land
 - Snow/ice
 - heavy precip.

Total Precipitable Water 2017-09-04 0900 UTC

Advected Layer PW (CIRA)

2300 UTC 12 Aug 2021

- Best for evaluating depth and extent of moisture source
- Advection method blends and moves features.
- Multiple satellites
- Frequency: hourly
- Latency: ~35-45 min
- Considerations:
 - Recent passes may not be included.
 - Greater uncertainty: over land, snow/ice, heavy precip.

500-300 mb

700-500 mb

850-700 mb

Sfc-850 mb

MiRS Rain Rate (GINA)

- CSPP MiRS package for DB
- Multiple satellites: 5 received by GINA (NOAA-21 soon maybe fall)
- Frequency: 12-20 passes/day S to N
- Low latency: Avg ~28 min
- Resolution: 15-25 km (sensor dep)
- Works with mosaic script
- Considerations:
 - More uncertainty over land
 - Water values more representative
 - Use as a general condition rather than specific point values
 - No retrievals over snow/ice

MiRS Snowfall Rate (GINA)

- CSPP MiRS package for DB
- Multiple satellites: 5 received by GINA
- Frequency: 12-20 passes/day S to N
- Low latency: Avg ~28 min
- Resolution: 15-25 km (sensor dep)
- Works with mosaic script
- Considerations:
 - Not affected by snow on ground
 - No retrievals temps < 7 deg F
 - Max liquid equivalent is 0.2"/hr
 - No retrievals over water

Improved MiRS Snowfall Rate AKSFR (GINA)

- CSPP MiRS package for DB
- Multiple satellites: 5 received by GINA Frequency: 12-20 passes/day S to N
- Low latency: Avg ~28 min(could be faster)
- Resolution: 15-25 km (sensor dep)
- Improvements
 - . Works over water Ο
 - o Improved detection from ML
 - Less over estimation
- **Considerations:**
 - May miss snow along coastlinesWorks best for deep snowfall
 - systems

Winter Precipitation Considerations

Snow/Ice on ground is challenging:

- No MiRS Rain Rate over snow/ice.
- SFR not affected by snow cover.
- RainRate + SFR more complete except for rain on snow.

GPM Rain Rate (SPoRT)

- Goddard Profiling Precipitation Retrieval (GPROF)
 Many satellites in constellation (9)
- over AK)
- Frequency: 20-30 passes/day S to
- TDRS downlink: Avg latency ~130 min. (valid time different than DB)
- Resolution: ~ 15-25 km (sensor dep)
- Works with mosaic script
- Considerations:
 - Represents a general condition Some values in snowfall
 - Ο (unvalidated)
 - More uncertainty over land
 - No retrievals over snow/ice?

Blended Satellite Precipitation Products

CMORPH2 Rain Rate (CPC)

- Blend of satellite sources (GPM, MiRS, GEO Rain Rates)
- GEO wind vectors used for morphing technique to generate products every 30 min.
- Coverage: global every 30 min.
- Latency: 225-255 min (goal is 60 min)
- Regular time steps can convert to QPE
- Considerations:
 - o Incorporates MiRS SFR liquid equiv.
 - Blending/morphing causes spatial discontinuities
 - GEO cloud top temps cause rain rates temporal discontinuities
 - More uncertainty over land
 - Limited estimates over snow/ice

AMSR2 Rain Rate (GINA)

- CSPP GAASP package for DB
- Only 1 satellite
- Frequency: 2-4 passes/day S to N
- Low latency: Avg ~20 min
- Resolution 5-10 km.
- Considerations:
 - o no retrievals near coast
 - No retrievals in snow or over snow/ice
 - More uncertainty over land

Users Needs In The Future From LEO MV Precip Products

- Fill in data gaps to improve coverage:
 - More LEO satellites with MV sensors for precipitation and ocean winds
 - Coordinate with partners domestic and international on orbital pass times to limit large gaps in MV data
 - Reduction in data gaps to forecasters in AK will improve situational awareness to provide IDSS in a surface data deprive region

Users Needs In The Future From LEO MV Precip Products

- Improve algorithms for:
 - Orographic effects on precipitation in complex terrain
 - Warm cloud shallow rain processes
 - Detection of liquid precipitation over snow
 - Utilize current AI/ML to improve MV precip products
- Continue to reduce latency of all LEO product through DB
- Continue to work with the field/end user to improve performance of products and strengthen relationships between NESDIS STAR developers and NWS forecasters

Questions??