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Algorithm Overview
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Forward RT Model (CRTM):
(1) TB= F(Geophysical State Vector)
(2)  Jacobians (dTB/dX)

A Priori Background:
Mean and Covariance of
Geophysical State (Dyn Climatol)
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• MW Only, Variational Approach: Find the “most likely” atm/sfc state that: (1) best matches the 
satellite measurements, and (2) is still close to an a priori estimate of the atm/sfc conditions.

• Same core software runs on all satellites/sensors; facilitates science improvements 
and extension to new sensors.

• Can run on SNPP, N20, N21/ATMS, N18, N19, MetopA, MetopB, MetopC F17, F18, 
GPM/GMI, Megha-Tropics/SAPHIR (experimentally on TRMM, AMSR2, TROPICS).

• V11.9 delivered in 2022, transition to operations in early 2023.



3Precipitation Estimation from LEO Satellites, Virtual Workshop,  1-2 March 2023

• Official reference is Stage-IV
• Stratified by surface type, but requirement is for land only
• Requirements from JPSS-REQ-1004
• All requirements are met except some individual cases for False Alarm Rate

Attribute Threshold Validated

Geographic 
coverage

Global (non-
frozen surfaces)

See 
table/figs

Vertical Coverage Surface

Horizontal Cell Size 15 km at nadir

Mapping 
Uncertainty

N/A (reflects 
SDR 
characteristics)

Measurement 
Range

N/A

Measurement 
Accuracy

See table

Measurement 
Precision

See table

Meets requirements except some cases 
Meets requirements

Reference: Stage IV
Values in () indicates NPP

Product SFC EDR Attribute MiRS Requirement

RR
(mm/h) Land

Accuracy (bias) (mm/h) 0.02 ~ 0.05
(0.02 ~ 0.05 ) 0.1

Precision (std dev) (mm/h) 0.5 ~ 0.8
(0.5 ~ 0.8) 1.0

Probability of Detection (%) 66 ~ 80
(67 ~ 80) 50

False Alarm Rate (%) 4.9 ~ 7.0
(4.8 ~ 6.3) 5

Heidke Skill Score
0.44 ~ 0.51

(0.47 ~ 0.52) 0.3

Product SFC EDR Attribute MiRS Requirement

RR
(mm/h) Ocean

Accuracy (bias) (mm/h) 0.02 ~ 0.08
(0.03 ~ 0.08) 0.1

Precision (std dev) (mm/h) 0.62 ~ 0.95
(0.64 ~ 0.92) 1.0

Probability of Detection (%) 75 ~ 80
(74 ~ 80) 50

False Alarm Rate (%) 3.3 ~ 5.7
(3.2 ~ 5.5) 5

Heidke Skill Score 0.47 ~ 0.61
(0.50 ~ 0.61) 0.3

Data Collected: Fall 2018, Winter 2018-19, 
Spring 2019, Summer 2019

Collocation details:
• Stage-IV:

o NOAA NCEP Multisensor
(radar + gauges) Precipitation 
Estimator (MPE) analyses, 
hourly over CONUS and 
adjacent near ocean, spatial 
resolution is 4 km.

o Collocation spatial radius: 
~4.55 km, average Stage-IV 
values within the range.

o Collocation time window: ± 30 
minutes.

• MRMS :
o Multi-Radar Multi-Sensor 

(MRMS) Quantitative 
Precipitation Estimation (QPE), 
in situ gauge corrected radar 
QPE, hourly over CONUS and 
adjacent near ocean, spatial 
resolution 0.01 degree.

o Collocation spatial radius: FOV 
size, average grid values fall 
within each FOV.

o Collocation time window: ± 30 
minutes

Requirements and Validation Results: NOAA-20 and SNPP ATMS
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Time Series: N20 and NPP vs. Stage-IV
Dec 2017 – Jun 2019 (5-day averages over CONUS)

Req

Req

Req

Req

Dec 
2017

Dec 
2018

Jun 
2018

Jun 
2019
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Comparison of 2019 Annual Daily Precipitation Rate: 
MiRS Composite and GPCP

• MiRS composite based on SNPP, 
N20, MetopB, MetopC.

• Good qualitative agreement.

• Tendency for MiRS > GPCP over N. 
America and Asia. (Light 
precipitation?)

Ref: Liu, et al., 2020: The NOAA Microwave Integrated Retrieval 
System (MiRS): Validation of Precipitation from Multiple Polar-Orbiting 
Satellites. JSTARS.



6Precipitation Estimation from LEO Satellites, Virtual Workshop,  1-2 March 2023

• Explosion in ML/AI applications driven by 
increasing availability of software tools (e.g. 
TensorFlow) and processing resources 
(GPUs).

• U-Net: type of CNN originally developed for 
biomedical image classification.

• One year (2021) of collocated MiRS N20 and 
MRMS data used to train U-Net. Tested on 
independent data in 2022.

Machine Learning: U-Net to correct MiRS precipitation
MiRS operational and U-Net corrected (Jan-Dec 2022)

Ref: Liu et al., 2023: Use of a U-Net Architecture to Improve Microwave Integrated Retrieval System (MiRS) Precipitation Rates, Submitted to TGRS.

MiRS operational and U-Net corrected accumulated (Jan-Dec 2022)

MiRS Oper
and MRMS

U-Net corrected 
and MRMS

MiRS Oper
vs. MRMS

U-Net corrected 
vs. MRMS

Bias: 0.33
HSS: 0.42

Bias: -0.06
HSS: 0.50
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MRMS MiRS (oper) MiRS (corrected)

MiRS (oper) - MRMS MRMS (corrected) - MRMS2022 Accumulated 
Precipitation

Corr: 0.77 Corr: 0.89

Machine Learning: U-Net to correct MiRS precipitation

Ref: Liu et al., 2023: Use of a U-Net Architecture to Improve Microwave Integrated Retrieval System (MiRS) Precipitation Rates, Submitted to TGRS.

• Generalizability of model to other 
regions/surface types to be tested.
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Impact of hydrometeor size assumption: 
Hurricane Irma (2017-09-10)

• MiRS uses CRTM 2.1.1. for RT model and Jacobians.
• Uncertainty related to hydrometeor microphysics assumptions:

– Scattering theory (CRTM 2.1.1 assumes spherical shapes (Mie) for both liquid and frozen particles).
– Particle distribution: size, (shape, orientation)

Oper (Reff=500 µm) RW= 600 µm, GW= 500 µm RW= 600 µm, GW= 600 µm

RW= 650 µm, GW= 650 µm RW= 700 µm, GW= 700 µm RW= 750 µm, GW= 500 µm

• MiRS assumes effective 
radius of 500 µm for all 
scenes.

• In extreme events, this is 
probably suboptimal.

• Possible approaches:
• Extend CRTM to output 

particle size Jacobians 
and include in retrieval 
state vector.

• Preclassification of each 
FOV to infer particle size 
and specify in CRTM.

• Upcoming CRTM 3.0 will 
have new scattering 
tables (using DDA).
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• Precipitation type (e.g. convective/stratiform) 
linked to different microphysical processes, 
atmospheric dynamics/stability, hydrometeor 
distributions.

• Algorithm performance dependent on dominant 
precipitation type.

• Errors in classified type can propagate to 
precipitation estimates.

Precipitation type 

Ref:
Kirstetter, The Joint IPWG/GEWEX Precipitation Assessment. WCRP Report 
2/2021, World Climate Research Programme (WCRP)

GPROF-GMI

GPROF-GMI GPROF-GMI

Kirstetter et al, 2020:  Integrated Multi-satellite Evaluation for the Global 
Precipitation Measurement: Impact of Precipitation Types on Spaceborne 
Precipitation Estimation, Satellite Precipitation Measurement, Vol. 2.

Algorithm performance using MRMS as reference

• Retrieval errors minimized when FOV 
convective percentage agrees with ground 
reference (MRMS)
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Other Challenges

• Precipitation over snow/ice and surface type 
characterization.

– Leverage existing precip over snow datasets 
(e.g. engage with GPM team) to train a 
preclassification scheme; Adjust 1DVAR 
constraints.

• Uncertainty estimation:
– Provision of uncertainty estimates would help 

users: how to weight multiple estimates in 
blended products (e.g. CMORPH, IMERG), 
provide level of confidence for users.

• Frozen precipitation (microphysics, surface 
characteristics).

• (Inter)calibration. 

Ref: Kirstetter et al. 2015: Probabilistic precipitation rate 
estimates with space-based infrared sensors. QJRMS.

IR Application: POP and PDF estimation within  
PERSIANN clustering scheme
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Potential Opportunities: SmallSats and Future 
Operational Sensors (e.g. TROPICS)

• MiRS extended to TROPICS TMS data 
(collaboration with TROPICS science team).

• NOAA QuickSounder/EDU (2025-2026)
• MiRS planned for EPS-SG/MWS (Q1 2025)
• Other opportunities:

– TEMPEST-D (INCUS, 2026)
– tomorrow.io (active PR constellation > 2025)
– EPS-SG/MWI+ICI (Q4 2025)

TROPICS NOAA-20 Stage IV

2021-10-10

Hurricane Ida: 2021-08-30

Ref: Yang et al., 2023: Atmospheric humidity and 
temperature sounding from the CubeSat TROPICS
mission: Early performance evaluation with MiRS. 
Remote Sensing of Environment
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Questions

• What is NOAA’s strategy to leverage increasing deployment of SmallSats (also EPS-
SG/ICI)? Pathfinder/demonstration missions vs. operational systems. (NOAA/OSAAP)

– Space based precipitation radars? (e.g. planned tomorrow.io constellation).
– Cal/val process (shorter lifecycles) and data processing infrastructure (e.g. bandwidth).
– Funding? (MiRS has a small team and multiple satellites/products to monitor/validate). 

Currently, funding weighted toward traditional large payloads.


