

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the National Aeronautics and Space Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

© 2023 Massachusetts Institute of Technology.

Author List

William J. Blackwell

Massachusetts Institute of Technology, Lincoln Laboratory Lexington, MA USA

R. Vincent Leslie

Massachusetts Institute of Technology, Lincoln Laboratory Lexington, MA USA

Ralf Bennartz

Vanderbilt university nashville, TN USA

Thomas Joseph Greenwald CIMSS Madison, WI USA

Nick Zorn

Massachusetts Institute of Technology, Lincoln Laboratory Lexington, MA USA

Scott A. Braun NASA Greenbelt, MD USA

Chris Velden CIMSS Madison, WI USA

Derrick C. Herndon CIMSS Madison, WI USA

Mark DeMaria

CIRA Fort Collins, CO USA

Robert M. Atlas

NOAA/AOML Miami, FL USA

Jeff Hawkins

UW CIMSS Madison, WI USA

Frank D. Marks

AOML Miami, FL USA

Kerri Cahoy

MIT Aero/Astro & EAPS Cambridge, MA USA

Galina Chirokova

CIRA Fort Collins, CO USA

Jason P. Dunion

Univ. of Miami/Cooperative Institute for Marine and Atmospheric Studies and NOAA/AOML/HRD Miami, FL USA

Robert F. Rogers

Hurricane Research Division, AOML Miami, FL USA

Brittany Anne Dahl

Univ. of Miami Rosenstiel School of Marine and Atmospheric Science Miami, FL USA

Science Mission Directorate Earth Venture Program EVI-3 TROPICS: <u>Time-Resolved Observations of Precipitation</u> structure and storm Intensity with a <u>Constellation of Smallsats</u>

William J. Blackwell (MIT LL), Principal Investigator Scott A. Braun (NASA GSFC), Project Scientist

TROPICS will provide microwave observations of tropical cyclones with <60 minute revisit to better capture storm dynamics and improve forecasting

TROPICS Pathfinder satellite launched June 30, 2021 Payload scans at 30 RPM

> High-resolution microwave data resolves tropical cyclone eye and rain structure

Constellation of Four 3U CubeSats MIT LL payload; BCT bus; KSAT downlink

TROPICS Microwave Sounder 12 channels (90-205 GHz) Temperature, Moisture, Rain Rate

Science Mission Directorate Earth Venture Program EVI-3

TROPICS: <u>Time-Resolved</u> Observations of <u>Precipitation</u> structure and storm Intensity with a Constellation of Smallsats

William J. Blackwell (MIT LL), Principal Investigator Scott A. Braun (NASA GSFC), Project Scientist

TROPICS will provide microwave observations of tropical cyclones with <60 minute revisit to better capture storm dynamics and improve forecasting

> Payload scans at 30 RPM

TROPICS Pathfinder satellite launched June 30, 2021

High-resolution microwave data resolves tropical cyclone eye and rain structure

Two upcoming launches by Rocket Lab No earlier than May 2023

FIVE-YEAR ANNIVERSARY MIT LL demonstrates the first CubeSat Sounder: MicroMAS-2a

A. Crews, W. Blackwell, et al., "Initial Radiance Validation of the Microsized Microwave Atmospheric Satellite-2A," in *IEEE Transactions on Geoscience and Remote Sensing*, doi: 10.1109/TGRS.2020.3011200.

TROPICS Satellite ("CubeSat") (TROPICS Millimeter-wave Sounder = TMS)

- 3U CubeSat: 10 cm x 10 cm x 36 cm
- Mass: 5.4 kg; Power: 15 W (payload is 3W)
- Blue Canyon Technologies bus
- LL passive millimeter-wave payload
- Innoflight SCR-100 S-band radio

C	TMS	Central	ATMS	MHS	MWHS-2	Beamwidth (degrees)	Foo Geo
G	lanner	inequency	Charmer	Channel	Channer	Down/Cross	Mea
	1	91.655±1.4 GHz	88.2 GHz	89.0 GHz	89.0 GHz	3.0/3.17	2
	2	114.50 GHz	-	-	118.75±5.0	2.4/2.62	2
	3	115.95 GHz	-	-	118.75±3.0	2.4/2.62	2
	4	116.65 GHz	-	-	118.75±2.5	2.4/2.62	2
	5	117.25 GHz	-	-	118.75±1.1	2.4/2.62	2
	6	117.80 GHz	-	-	118.75±0.8	2.4/2.62	2
	7	118.24 GHz	-	-	118.75±0.3	2.4/2.62	2
	8	118.58 GHz	-	-	118.75±0.2	2.4/2.62	2
	9	184.41 GHz	183.31±1.0	183.31±1.0	183±1.0	1.5/1.87	1
	10	186.51 GHz	183.31±3.0	183.31±3.0	183±3.0	1.5/1.87	1
	11	190.31 GHz	183.31±7.0	190.31	183±7.0	1.5/1.87	1
	12	204.8 GHz	-	-	-	1.35/1.76	1

Beamwidth (degrees) Down/Cross	Nadir Footprint Geometric Mean (km)*	Measured NEdT (K)
3.0/3.17	29.6	0.66
2.4/2.62	24.1	0.96
2.4/2.62	24.1	0.82
2.4/2.62	24.1	0.86
2.4/2.62	24.1	0.79
2.4/2.62	24.1	0.81
2.4/2.62	24.1	0.90
2.4/2.62	24.1	1.03
1.5/1.87	16.9	0.58
1.5/1.87	16.9	0.55
1.5/1.87	16.9	0.53
1.35/1.76	15.2	0.52

TROPICS Pathfinder (Qualification Unit) Launched June 30, 2021

Pathfinder "precursor" mission provided checkout of operations, ground links, data processing & science

Detailed cal/val indicates that radiometric calibration performance is better than 1 K in all channels

NOAA-funded low-latency experiment conducted in April 2022

Provisional (beta) data now available to general public via GES-DISC (validated data coming soon)

Pathfinder's Twice-Daily Global Collections

91.656 GHz – Channel 1 (W) – Daytime and Nighttime Mosaics

204.8 GHz – Channel 12 (G4) – Daytime and Nighttime Mosaics

TC Emnati, Feb 10, 2022, 92 GHz

What is the relationship between structural features of the storm and intensification?

TC Batsirai, Feb 5, 2022, 205 GHz

TROPICS Data Addresses Critical Science Questions

Ultimately, we want to show that TROPICS data will improve forecasting of tropical cyclone track and intensity

LEO Precip Workshop - 10 WJB 1 March 2023 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TROPICS Pathfinder Data Compares Favorably to State-of-the-Art Sensors

TROPICS Pathfinder Observations of Cyclone Emnati Able to Resolve Eyewall Replacement Cycle!

LEO Precip Workshop - 12 WJB 1 March 2023

TROPICS Pathfinder Observations of Hurricane Ian 9/28/2022 07:21 UTC

280 260 240 Radiance [K] G4: 204.80 GHz 220 200 180 160 140 76[°] W 80[°] W

LEO Precip Workshop - 13

WJB 1 March 2023

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

$\overline{\otimes}$

Preview of "Validated" Level 1B Product (Available Soon!) 18+ Months of TROPICS Pathfinder Calibration Trending

Temperature and Moisture Retrievals Meet Requirements (Cloudy, mostly non-precipitating atmospheres)

TROPICS Pathfinder

TROPICS Long-term Data Records: MidTrop Temperature

LEO Precip Workshop - 16 WJB 1 March 2023

Reference: J. Yang, et al, *Remote Sensing of Environment*, in preparation

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TROPICS Pathfinder Mean Annual Precipitation Compares Well with NOAA-19 and other Sounders

Correlation Between Coincident Retrievals from GMI and Cross-track Sounders Over Ocean

Reference: Y. You, "Evaluating and Improving TROPICS Millimeter-Wave Sounder's Precipitation Estimates over Ocean," JGR: Atmospheres, under review

- The Pathfinder low-latency demo results will be mapped to constellation orbit to understand potential constellation stats
 - Incorporate demo lessons learned
 - Estimate constellation low latency cost
- Constellation frequency authorizations obtained
- Funding from NOAA and ONR to improve TROPICS latency gratefully acknowledged
- Average latency estimate: 45 minutes

Preliminary Pathfinder analysis indicates that the low latency mode for the constellation is very manageable

- The TROPICS Pathfinder satellite showed the compact TROPICS design performs comparably to state-of-the-art sounders
 - Lessons learned will help commission and operate constellation
- Boston-based Tomorrow.io has funded a Cooperative Research and Development Agreement with MIT LL to improve the payload, host on 6U bus, and deploy an initial constellation of 18 satellites

- TROPICS will provide the first high-revisit microwave observations of precipitation, temperature, and humidity
- **TROPICS CubeSats delivered with excellent performance**
- Pathfinder mission has demonstrated all mission elements and provided new tropical cyclone imagery; 9000+ orbits and counting!
- Two constellation launches planned for May 2023

