Ocean Color Applications in Fisheries Science and Management in the Northeast U.S.

Kimberly J. W. Hyde Northeast Fisheries Science Center

Take Away Messages

The oceanographic conditions in the Northeast U.S. are changing and affecting all levels of the marine food web.

Changes in the **abundance**, **productivity**, **phenology and community composition of phytoplankton** can affect the marine food web and biogeochemical cycles.

The **long-term time series** of phytoplankton have multiple operational and fisheries management applications.

NOAA Fisheries is responsible for the stewardship of living marine resources through science-based conservation and management and the promotion of healthy ecosystems.

- Productive and sustainable fisheries
- Safe sources of seafood
- Recovery and conservation of protected resources
- Healthy ecosystems

Northeast Fisheries Science Center conducts ecosystem-based research and assessments to understand and predict changes to marine ecosystems and their subsystems affecting:

- living marine resources
- fisheries
- habitats
- ecosystem condition
- productivity
- aquaculture

Why ocean color satellites?

rce/document/current-conditions-nort heast-us-shelf-ecosystem

Ecosystem Based Management

Project Overview

Primary goal: Comprehensively characterize the spatial and temporal variability of the phytoplankton community in the Northeast Shelf ecosystem over the 20+ year ocean color time series for operational fisheries applications.

Primary questions: Which algorithms perform best? Can they be regionally improved using local *in situ* observations? How do abundance and absorption-based algorithms compare?

Primary objectives: Collect *in situ* measurements of optical properties, phytoplankton imagery (IFCB), pigments (HPLC), and nutrients and evaluate and optimize the performance of satellite size class algorithms.

In situ Observations

Temperature/Salinity
Absorption/Attenuation/
Scattering/Backscattering
Chl, CDOM, Fluorescence

Depth (m)

100

1000

10000

Aug 2018 Nov 2018 May 2019 Aug 2019 Oct 2019

SeaBAS

Radiometry

Page 9 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Optimization and assessment of phytoplankton size class algorithms for ocean color data on the Northeast U.S. continental shelf

Kyle J. Turner^{a,*}, Colleen B. Mouw^a, Kimberly J.W. Hyde^b, Ryan Morse^b, Audrey B. Ciochetto^a

Check for updates

Next Steps

What are the **environmental drivers** of phytoplankton abundance and community size composition in the U.S. Northeast Continental Shelf?

Somang Song

THE UNIVERSITY OF RHODE ISLAND GRADUATE SCHOOL OF OCEANOGRAPHY

Fisheries Applications

Ecosystem Reports & Products

https://www.fisheries.noaa.gov/new-england-mid-atlantic/ ecosystems/state-ecosystem-reports-northeast-us-shelf

Ecosystem and Socioeconomic Profiles

Research Assessment

Page 15

Protected Species

Relationship between peak habitat use and regional temperature phenology

Western GOM spring onset

p < 0.001

p = 0.009

p = 0.219

2018

Photo credit: Brigid McKenna, Center for Coastal Studies under NOAA research permit #19315-01

WILEY

Decadal-scale phenology and seasonal climate drivers of migratory baleen whales in a rapidly warming marine ecosystem

145 150 155 160 165 170

Daniel E. Pendleton¹ | Morgan W. Tingley² | Laura C. Ganley¹ Kevin D. Friedland³ | Charles Mayo⁴ | Moira W. Brown⁵ | Brigid E. McKenna⁴ Adrian Jordaan⁶ Michelle D. Staudinger^{6,7}

Protected Species

ECOSPHERE

Macrosystems Ecology 🗈 Open Access 💿 🗿

Spatial ecology of long-tailed ducks and white-winged scoters

wintering on Nantucket Shoals

Timothy P. White 🔀, Richard R. Veit

Martha's Vineyard Nantucket E: Summer 2017-2019

Modeling

Planktivores

Page 19 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Modeling

Regime shifts

2000

Aug Sept Oct

July

Nov Dec

GMRI

2020

https://www.fisheries.noaa.gov/new-england -mid-atlantic/ecosystems/fisherles-habitat-n rtheast-us-shelf-ecosystem

Page 22 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service

Fisheries Satellite Data Requirements

- Accurate, consistent, timely, climatological quality high-resolution ocean color data/products that can detect changes in the phytoplankton community
 - Merged (e.g. OC-CCI)/gap-filled (DINEOF) sensor agnostic products
- Hyperspectral data (i.e. PACE) for more accurate detection of phytoplankton functional groups
- High quality in situ validation data & optimized regional algorithms
- Near real-time data for dynamic ocean management
- High resolution geostationary imagery (GLIMER & GeoXO)
 - Aquaculture, HABs, Coastal Runoff

Take Away Messages

The oceanographic conditions in the Northeast U.S. are changing affecting all levels of the marine food web.

Changes in the **abundance**, **productivity**, **phenology and community composition of phytoplankton** can affect the marine food web and biogeochemical cycles.

The **long-term time series** of phytoplankton have multiple operational and fisheries management applications.

Thank You

