Developing NOAA’s Next-Gen Earth Observation Capability

Briefing to NOAA’s Science Advisory Board / Priorities for Weather Research

Vanessa Griffin, Office of Systems Architecture and Advanced Planning (OSAAP)
Our Vision:
Provide a truly integrated digital understanding of our Earth environment that can evolve quickly to meet changing user expectations by leveraging our own capabilities and partnerships.
Today’s Space Architecture

Today’s space-based observation architecture is highly capable – but not adaptable.

Large, capable satellites require:
• Very low risk for each satellite
• 10+ years in development

Very low risk requires:
• Locked up funds
• High cost for top end of assurance scale

Long development requires:
• Inability to exploit tech advances
2018 Architecture Study Informing Our Next-Gen Decisions

NSOSA identified the most cost effective space segment architectures for performing the NOAA mission beyond the POR to 2050.

High-Value Frontier Attributes

Mix of higher-impact observations
- Small & medium platforms
- Enhanced imagery & high-altitude coverage

More agility
- Disaggregated
- Onramps to new technology

New business models
- Data purchases, ride shares, & hosted payloads
NOAA’s Next-Gen Earth Observation Strategy

Integrated, Adaptable, and Affordable: Orbits, Instruments & Systems

<table>
<thead>
<tr>
<th>LEO</th>
<th>GEO</th>
<th>Space Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miniaturized instruments on small, lower cost, and proliferated satellites and partner data improving forecasts through better and additional data. Better precipitation forecasts, wave height predictions, ocean currents, and more.</td>
<td>Continuous real-time observations supporting warnings and watches of severe weather and hour-by-hour changes. High-inclination orbits to observe northern latitude & polar regions.</td>
<td>Reliably monitoring space weather from all applicable orbits (L1, GEO, LEO, HEO, L5) to protect the nation’s valuable, critical infrastructure. New capabilities at L5 and high earth orbit can provide additional insight & improve forecasts.</td>
</tr>
</tbody>
</table>

Common Ground Services

Secure ingest of data in different formats from different partners requires a flexible, scalable platform. Common Services approach integrates cloud, AI, and machine-learning capabilities to verify, calibrate, and fuse data into new and better products and services.
Trends Shaping Our Next-Gen Architecture

New business models: Joint Venture, other transactional authority, data buys

Commercial capability: Rapid pace of innovation, cheaper launch capability, more satellites

Ground & data system to match space capability: DACS, NCCF & NGES

Partnerships w/ private industry, other agencies & strategic partners: Obtaining global data

Engaging our users: user needs are evolving as quickly as the climate changes (e.g., demand for more ocean science)
Joint Venture – Leveraging Partnerships

Current

- NOAA launched Low Orbit
- NOAA launched Geostationary

Partner Satellites
- EU
- Canada
- Japan

Joint Venture

Leverage capabilities being developed by other federal partners & industry - to provide high return on funds

- Exploit partner data
- Exploit partner technologies
- Partner to supplement other agencies’ initiatives to meet NOAA needs
- Initial Concept Development to operationalize new data & technology

2030-2050

Enterprise Architecture
- Partially disaggregated Low Orbit
- Mixed US government Geostationary
- Partner Satellites
- Mixed resolution, update rates
- NOAA launched, rideshare, and payload
- Data buys

NOAA launched SmallSats
Space
Weather
Data Purchase
Federal Partners
Industry Partners
NOAA SmallSats
Japan
Canada
EU
NOAA’s Future Observation System in GEO

• In addition to maintaining today’s 24/7 now-casting, GeoXO advances NOAA’s observational capabilities to meet new mission requirements and supports the World Meteorological Organization’s vision for 2040
• GeoXO observations will provide a comprehensive understanding of the atmosphere, oceans, and weather through 2050, including potential new capabilities (depending on budget):
 • Improved nighttime monitoring of severe weather and hazards with a Day/Night Imager
 • Better forecasts with improved numerical weather prediction and nowcasting with IR Sounder
 • Enhanced monitoring of ocean health and productivity with Ocean Color Instrument
 • Reduced health impacts from poor air quality with Atmospheric Composition Instrument
GeoXO Constellation

GEO-West
Visible/Infrared Imager
Lightning Mapper
Ocean Color
Space Weather Suite*

GEO-Central
Hyperspectral Infrared Sounder
Atmospheric Composition
Partner Payload

GEO-East
Visible/Infrared Imager
Lightning Mapper
Ocean Color
Space Weather Suite*

*Space Weather Program to define and fund plans
NESDIS LEO Approach: Mission Concepts to Augment Global Measurement Capability

• Launch satellites more frequently to enhance refresh and augment global observations collected from earth observation satellites, beginning in mid to late-2020s
• Replenish critical sounding data
• NESDIS completed its LEO Milestone-0 Review March 10, 2021

• Capture 3D winds, ocean surface vector winds, precipitation data, and low-light imagery
• Hybrid approach: data from NOAA satellites, strategic partners, and commercial providers
The Space Weather Observations (SWO) Program will need a comprehensive observational capability for several orbital vantage points.

Thermospheric and ionospheric objectives will require in situ measurements from LEO as well as imaging capabilities from GEO.

For the magnetosphere, in situ measurements from GEO and HEO can be combined with auroral imaging.

Coronal and photospheric imagery from L1 and L5 can be used for stereoscopic analysis. In situ plasma/field data will drive heliospheric models.
SWO will implement:
- Continuity of current L1 space weather measurements
- Continuity of current geostationary space weather measurements
- Additional measurements as recommended by NSOSA

SWO will leverage partnerships, including:
- NASA, DoD, EUMETSAT partnerships for LEO space weather observations
- European Space Agency (ESA) agreement for enhanced capability at L5
- Discussions with Canadian Space Agency (CSA) for HEO auroral imaging
- International participation in Space Weather (Follow-On) Antenna Network
- NASA-NSF-NOAA Decadal Survey to recommend future technology infusion
Advancing Data Science and Information Services

TODAY’S GROUND SERVICE
- Single system data services
- Limited computing power

Data Collected & Transmitted from Single Observation System

Delivery to NOAA Users

Development of Products & Services

Forecasts, Warnings, Watches

TOMORROW’S GROUND SERVICE
- Secure ingest for all data types
- Powered by AI, data science
- High performance computing capability, cloud transition & hosting for data storage, stewardship & access

Data Collected & Transmitted from Multiple Sources: International, Commercial, USGS Partners

Cloud-based Data Stewardship, Supercomputing Capability

Development of New Products & Services Delivered in New Ways to More Users

Co-located Earth system data available for Data-Driven Science

NOAA is moving to a ground system that matches our agile space-based observation systems.
NESDIS POR to
Next Generation Architecture

DSCOVR
OPERATIONAL - JULY 27, 2016

JASON-3
OPERATIONAL - JULY 1, 2016

COSMIC-2
COSMIC-2 - OPERATIONAL FEB 25, 2020

SWFO
SWFO L1 - FY 2024

GOES-R SERIES
GOES-16 - OPERATIONAL DEC 18, 2017
GOES-17 - OPERATIONAL FEB 12, 2019
GOES-T - FY 2022
GOES-U - FY 2025

JPPS SERIES
NOAA-20 - OPERATIONAL MAY 30, 2018
JPSS-2 - FY 2023
JPSS-3 - FY 2026
JPSS-4 - FY 2031

SENTINEL-6 Michael Freilich
Sentinel-6 Michael Freilich - LAUNCHED NOV 21, 2020

GeoXO
Targeting early 2030s

LEO Satellites
Targeting mid-to-late 2020s for demos

Targeting late 2020s

Targeting mid-to-late 2020s for demos
BACKUP SLIDES
TIMELINE TO TOMORROW: UPDATE ON NOAA’S NEXT-GEN GEO and LEO SYSTEMS*

Deliveries
Services

Engagements
Program Milestones

GOES-R Launch
GOES-S Launch
GOES-T Launch
JPSS-1 Launch
JPSS-2 Launch
JPSS-3 Launch
GOES-U Launch
JPSS-4 Launch

BAA RFP’s Released
Industry Concept Studies
BAA Phase A Activities
SounderSat Implementation Approval
Award LEO Ground Follow-on
2nd Round of BAA’s

NSOSA Study
SounderSat Launch
SWFO-L1 Launch
GEO-XO1 Launch
GEO-XO1 Ground System Development Awards
Space Weather Launch
GEO-XO1 Launch

Next Generation GOES commitment
LEO Soundersat commitments
Space Weather next gen definition

*Later launch dates notional; dependent on out year funding
Tomorrow’s Space Architecture: A Potential Future

Sample Future Architecture, ~2032
New Business Models with Commercial Sector

Industry Concept Studies: 32 studies worth $17.3 million to study temperature and moisture sounder instruments and mission concepts in LEO, and instruments, missions and spacecraft in GEO

Ongoing BAA Study Cycle: Regular cadence of industry studies to make use of expertise and innovation and fill out remainder of LEO constellation

Commercial Weather Data Purchase: Contracts awarded for operational Radio Occultation (RO) data purchase

Commercial Weather Data Pilots: Completion of Round 2 in RO, exploring other data types available commercially

NESDIS Ground Enterprise Study: NSOSA-model analysis to inform next-gen ground system decisions
NOAA’s Long Term R/O Objectives: 20,000

NOSC endorsed IROWG-6 goal of 20,000 occultations a day. NSOSA established threshold of 5,000 globally distributed occultations daily at highest quality and availability. Remaining daily observations more flexibility in performance, availability and geographic distribution.

Today: NOAA obtains ~5,000 occultations daily from COSMIC-2 and leverages RO from METOP, Kompsat and PAZ.

Long-term: Obtain ~20,000 daily occultations from NOAA sounder sats in LEO, NASA Sentinel-6/MF, EUMETSAT, other international partner and commercial.
Near Term Commercial Data Objective: Obtaining 5,000 Daily Occultations

- When fully operational, COSMIC-2 to provide ~5,000 high-quality daily RO soundings – a threshold established by NSOSA.

- NOAA will continue to leverage “missions of opportunity“ to fill out polar regions.

- Initiated commercial RO data for operational use.
Long Term Commercial Data Objective: Augmenting High-Quality RO

- NOAA to continue operating a base of NOAA LEO satellites dedicated to soundings, including high-quality RO
- Other NOAA satellites, ongoing partnership with EUMETSAT, to provide “backbone” set of global measurements to satisfy threshold requirements
- NOAA to augment this base with high-quality RO data from other international partners coming online in 2020s (JasonCS/Sentinel-6 follow-on) and commercial data when available