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What is the impact of IR soundings in regional and global models?

What is the op8mum latency for regional and global models?

Impact of IR sounders on reanalysis for climate studies

Do you use IR soundings for both retrievals as well as direct assimila8on in opera8ons? How 
are retrievals used?
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1. Emissions

-3 TgN/yr = 10% of global total emissions 
뺶 Europe (4.1 TgN/yr), US (4.2 TgN/yr), India (3.4 TgN/yr)

Miyazaki et al., 2020a



Ozone PM2.5

- 2,100 more ozone-related and at least 60,000 fewer PM2.5-related morbidity incidences, 
- Augmented efforts to reduce hospital admissions

3. Health Impacts

MDA8 ozone and PM2.5 response to the COVID emission anomaly

(Feb 15-25, 2020)

up to +16 ppb up to 23 µgm-3    
 for a single day

Ozone PM2.5

2. Concentra8ons

Miyazaki et al., 2020a
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 Tropospheric Chemical Reanalysis
• 16 years (2005-present), two-hourly, global, surface to lower stratosphere chemical 

concentrations of 35 species, including O
3
, NOx, OH, SO

2
, VOCs

• Anthropogenic, biogenic, biomass burning, and lightning emissions (NOx, CO, SO
2
)

• Used in various science applications, including validation of NASA satellite products
• Able to support OSSE activities in support of mission formulation

Data Assimilation

Validation against
in-situ & aircraft 
measurements

Satellite 
Observations 
Assimilated in 
MOMO-Chem

MOMO-Chem (Multi-mOdel Multi-cOnstituent Chemical) Data Assimilation System

Models
Used for 

Assimilation
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Multi-constituent multi-satellite chemical data assimilation
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Decadal tropospheric chemistry reanalysis: TCR-2
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PhaseII

Kazuyuki Miyazaki, WG co-lead, Jet Propulsion Laboratory 
Dylan Jones, WG co-lead, Univ. of Toronto, Canada 

Helen Worden, TOAR-II SC, NCAR, USA

IGAC TOAR-II chemical reanalysis Focus Working Group

Overview and Goals in support of TOAR-II 

• Evaluation of chemical reanalyses with TOAR-II observations will assess the potential of 
using reanalysis data for studying spatial gradients at both regional and global scales 
and trends in areas with sparse in-situ observations. 

• Assess the relative importance of individual observations to improve surface ozone 
analyses and help to design observing systems that better capture the distribution and 
regional trends in tropospheric ozone. 

• Inter-comparisons of top-down precursor emissions from reanalyses, and their impacts 
on surface/tropospheric ozone and subsequent radiative effects will facilitate evaluation 
of emission scenarios and environmental policy in realistic conditions 

• Improve the TOAR-II observation quality control processes and representativeness
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Ozone reanalysis inter-comparisons

Products Model DA Period

CAMS-iRA
IFS (CB05) 
T159 (1.1) 4D-VAR 2003-2018

CAMS-RA
IFS(CB05)+Aerosol  

T255 (0.7) 4D-VAR 2003-present

TCR-1
CHASER-EnKF 

 T42 (2.8) EnKF 2005-2016

TCR-2
MIROC-Chem-EnKF 

T106 (1.1) EnKF 2005-2018

CAMS-iRA 4.9

CAMS-RA 3.2

TCR-1 5.0

TCR-2 3.4

Huijnen et al., 2020

RMSE (ppbv)

TCR-2CAMS

Ozonesonde
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Towards an Air Quality Constellation

How does the constellation improve knowledge of global air quality?  
➢ GEO sounders (GEO-CAPE, TEMPO, Sentinel-4, GEMS) will provide an unprecedented number of composition 

observations at high spatial resolution. 
➢ LEO sounders (IASI, CrIS, S5p) provide the global picture and thread the GEO observations together. 
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AIRS/OMI ozone monitoring and assimilation
      Joint LW/SW or ultra-high spectral resolution measurements distinguish upper/lower troposphere.   

➢ TIR observations are sensitive to the free-tropospheric trace gases. 
➢ UV-Vis-NIR observations are sensitive to the column abundances of trace gases.

NASA Retrieval Algorithm 

Data Assimilation 

TIR

UV

}

Ozone 
Profiling

Operational Data Processing

MUlti-SpEctra, MUlti-SpEcies, MUlti-SEnsors (MUSES) Retrieval Algorithm 

Fu et al., 2019

How are retrievals used?
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EnKF: The forecast error covariance is advanced by the model itself (flow-dependent 
forecast error covariance), which allow us to fully take advantage of the CTM.
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method and the ensemble square root filter (SRF) method
(e.g., Whitaker and Hamill, 2002). SRF methods generate
an analysis ensemble mean and covariance that satisfy the
Kalman filter equations for linear models (e.g., Ott et al.,
2004), whereas PO methods introduce an additional source
of sampling errors. The LETKF is related to the SRF method
(e.g., Whitaker and Hamill, 2002), and it has conceptual and
computational advantages over the original EnKF (e.g., Ott
et al., 2004; Hunt et al., 2007; Kalnay, 2010). One of the
advantages is that the LETKF performs the analysis locally
in space and time, and reduces sampling errors caused by a
limited ensemble size. In addition, the analyses at different
grid points are performed independently, which reduces the
computational cost because most calculations are performed
in parallel in the LETKF (e.g., Miyoshi and Yamane, 2007).

Here we briefly introduce the LETKF technique follow-
ing Hunt et al. (2007) and Kalnay (2010). The LETKF up-
dates the analysis and transforms a background ensemble
(xb

i ;i= 1,...,k) into an analysis ensemble (xa
i ;i= 1,...,k),

where x represents the model variable; b the background
state; a the analysis state; and k the ensemble size. In the
forecast step, a background ensemble, xb

i , is globally ob-
tained from the evolution of each ensemble member using
the forecast model. The background ensemble mean, xb, and
its perturbations (spread), Xb, are estimated from the ensem-
ble forecast,

xb =
1

k

kX

i=1

xb
i ; Xb

i =xb
i �xb. (1)

These are N ⇥ k matrices, where N indicates the system
dimension and k indicates the ensemble size. The back-
ground error covariance follows from the assumption that
background ensemble perturbations Xb sample the forecast
errors,

Pb =Xb(Xb)T . (2)

In the analysis step, an ensemble of background vectors,
yb
i , and an ensemble of background perturbations in the ob-

servation space, Yb, are obtained as follows:

yb
i =H

�
xb
i

�
;Yb =yb

i �yb, (3)

where H is the non-linear observational operator that con-
verts an N -dimensional state vector to a p- (number of ob-
servation) dimensional observational vector. To compute the
analysis for each grid point independently, the local analysis
error covariance is estimated in the ensemble space:

P̃a =
h (k�1)I

1+�
+
�
Yb

�T
R�1Yb

i�1
, (4)

where R denotes the p⇥ p observation error covariance.
To prevent an underestimation of background error covari-
ance and resultant filter divergence (e.g., Houtekamer and
Mitchell, 1998) caused by model errors and sampling errors,

the covariance inflation technique (with a covariance infla-
tion parameter �=0.05 in our setting, see also section 4.2) is
applied to inflate the forecast error covariance at each analy-
sis step.

Using P̃a, the transformation matrix, T, is given by,

T=
h
(k�1)P̃a

i1/2
(5)

T is a k⇥ k matrix which analyzes the variables for each
grid point (Hunt et al., 2007). The dimension k is generally
smaller than N , and calculations of large vectors or matrices
with N dimension are not necessary to obtain the T matrix in
the LETKF different from the original EnKF. Then, we can
update the ensemble mean by

xa =xb+XbP̃a
�
Yb

�T
R�1

⇣
yo�yb

⌘
, (6)

where yo represents the observation vector. The new anal-
ysis ensemble perturbation matrix in the model space Xa is
simultaneously obtained by transforming the background en-
semble Xb with a transform matrix T at every grid point
(Xa =XbT), while the new analysis ensemble in the model
space, xa

i , is obtained from the combination of the back-
ground mean and ensemble perturbations (xa

i =xa+Xa
i ).

The EnKF approaches always have a spurious long dis-
tance correlation problem because of imperfect sampling of
the probability distribution due to limited ensembles (e.g.,
Houtekamer and Mitchell, 2001). To improve the perfor-
mance of the data assimilation with reducing the ensemble
size, the LETKF employs a covariance localization tech-
nique. We assumed that observations located far from the
analysis point have larger errors and those observations have
less impact on the analysis (e.g., Miyoshi and Yamane,
2007). As a result, the analysis is solved at every grid point
by choosing nearby observations (depending on the localiza-
tion length, see Section 4.2).

The tropospheric AK provided in the OMI retrieval prod-
uct is used in the assimilation. The use of the average ker-
nel in the observation operator removes the contribution of
the retrieval error due to the a priori profile error (Eskes and
Boersma, 2003);

yb
i =H

�
xb
i

�
=

kX

i=1

aix
b
i , (7)

where ai is each component of the AK at ith vertical level,
and xb

i is the collocated model profile expressed in terms of
NO2 sub-columns for each of the retrieval vertical layers.
Simulated NO2 fields in this way are converted into tropo-
spheric NO2 columns using the simulated the AK, the sur-
face pressure obtained from the AGCM simulation, and the
tropopause height used in the OMI retrieval product.

In summary, the LETKF analyzes variables (i.e., NOx

emissions) for every grid point by choosing observations
(i.e., OMI retrievals) that determine the observational space.
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In summary, the LETKF analyzes variables (i.e., NOx

emissions) for every grid point by choosing observations
(i.e., OMI retrievals) that determine the observational space.

Analysis ensemble mean and its perturba8on 

Background error covariance 

(assuming that background ensemble perturbacons sample the forecast errors)

4 Miyazaki et al.: Tropospheric chemistry reanalysis

2.2.2 The analysis step

The analysis ensemble mean is obtained by updating the
background ensemble mean:

xa = xb +XbP̃a(Yb)TR�1(yo �yb), (4)

where yo represents the observation vector, R is the p⇥ p275

observation error covariance, and p indicates the number of
observations. The observation error information is obtained
for each retrieval (cf., Section 2.6), where P̃a is the k⇥ k

local analysis error covariance in the ensemble space:

P̃a =


(k� 1)I

1+�
+
�
Yb

�T
R�1Yb

��1

. (5)280

A covariance inflation factor (�=6%) was applied to in-
flate the forecast error covariance at each analysis step. The
inflation is used to prevent an underestimation of background
error covariance and resultant filter divergence caused by
model errors and sampling errors. The estimation of the P̃a

285

matrix does not require any calculation of large vectors or
matrices with N dimensions in the LETKF algorithm.

The new analysis ensemble perturbation matrix in the
model space (Xa) is obtained by transforming the back-
ground ensemble Xb with P̃a:290

Xa =Xb
h
(k� 1)P̃a

i1/2
. (6)

The new background error covariance for the next forecast
step is obtained from a model simulation starting from the
analysis ensemble.

2.3 State vector295

The state vector for the reanalysis calculation is chosen to op-
timise the tropospheric chemical system and to improve the
reanalysis performance. The state vector used in the reanal-
ysis includes several emission sources (surface emissions of
NOx and CO and LNOx sources) as well as the predicted300

concentrations of 35 chemical species, in the form of a scal-
ing factor for each surface grid cell for the complete NOx and
CO emissions at the surface (not for individual sectors) and
for each production rate profile of the LNOx sources. Per-
turbations obtained by adding these model parameters into305

the state vector introduced an ensemble spread of chemi-
cal concentrations and emissions in the forecast step. The
background error correlations, estimated from the ensemble
model simulations at each analysis step, determine the re-
lationship between the concentrations and emissions of re-310

lated species, which can reflect daily, seasonal, interannual,
and geographical variations in transport and chemical reac-
tions. The emission sources were optimised at every analysis
step throughout the reanalysis period. The initial bias in the
a priori emissions can be reduced gradually through the data315

assimilation cycle.

2.4 Covariance localisation

The EnKF approaches always have the problem of introduc-
ing unrealistic long distance error correlations because of the
limited number of ensemble members. During the reanaly-320

sis calculation, such spurious correlations lead to errors in
the fields that may accumulate and will influence the reanal-
ysis quality in a negative way. In order to improve the filter
performance, the covariance among non- or weakly related
variables in the state vector is set to zero based on sensi-325

tivity calculation results, as in Miyazaki et al. (2012b). The
analysis of surface emissions of NOx and CO allowed for
error correlations with OMI NO2 and MOPITT CO data,
while those with other data were neglected. For the LNOx

sources, covariances with MOPITT CO data were neglected.330

Concentrations of NOy species and O3 were optimised from
TES O3, OMI NO2, and MLS O3 and HNO3 observations,
whereas correlations with MOPITT CO were set to zero. Dif-
ferent from the study of Miyazaki et al. (2012b), concentra-
tions of non-methane hydrocarbons (NMHC) were not op-335

timised in the reanalysis. The assimilation of MOPITT CO
data led to concentrations of NMHC that increased to unre-
alistic values during the reanalysis, likely associated with too
much chemical destructions of CO (cf., Section 7.4.2).

Covariance localization was also applied to avoid the in-340

fluence of remote observations, which is described in Section
2.7.

2.5 Observation operator

The observation operator (H) includes the spatial interpola-
tion operator (S), a priori profile (xapriori), and averaging345

kernel (A), which maps the model fields (xb) into retrieval
space (yb) thereby accounting for the vertical averaging im-
plicit in the observations, as follows:

yb =H(xb) = xapriori +A(S(xb)�xapriori), (7)

where xb is the N–dimensional state vector and yb is the350

p–dimensional model equivalent of the observational vec-
tor. The averaging kernel (A) defines the vertical sensitiv-
ity profile of the satellite retrievals and removes the depen-
dence of the analysis on the retrieval a-priori profile (Eskes
and Boersma, 2003).355

2.6 Observation error

The observation error provided in the retrieval data prod-
ucts includes contributions from the smoothing errors, model
parameter errors, forward model errors, geophysical noise,
and instrument errors. In addition, a representativeness er-360

ror was added for the OMI NO2 and MOPITT CO observa-
tions to account for the spatial resolution differences between
the model and the observation using a super-observation
approach following Miyazaki et al. (2012a). The super-
observation error was estimated by considering an error cor-365
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PITT, OMI, and MLS are assimilated into the global chem-
ical transport model (CTM) “Chemical AGCM for study of
atmospheric environment and radiative forcing” (CHASER).
TES has the potential to efficiently constrain tropospheric
O3 profiles (Foret et al., 2009). MOPPIT is suitable for
global CO emission estimates because of its good global
coverage. MLS is expected to provide important constraints
on the background concentrations of O3, HNO3, and other
O3 precursors in the UTLS together with lightning NOx

sources. The high temporal and spatial resolutions of the
OMI are useful to optimize NOx emissions on a daily ba-
sis. The assimilation results are validated against indepen-
dent data, obtained from five satellite instruments, MLS/OMI
(tropospheric O3 column, TOC), TES (CO), and GOME-
2 and SCIAMACHY (tropospheric NO2 column). Global
ozonesonde data and aircraft observations obtained during
the INTEX-B campaign (Singh et al., 2009) are also used
for the validation of the vertical profiles. To the authors best
knowledge, this is the first advanced data assimilation system
that simultaneously optimizes the concentrations and emis-
sions of multiple tropospheric trace gases, based on multiple
satellite sensor/species data sets. The structure of this pa-
per is as follows. Section 2 describes the data. Section 3
introduces the data assimilation system. Section 4 presents
Observing System Experiment (OSE) results to identify the
relative contribution of each assimilated data set. Section 5
presents the data assimilation results including the estimated
emissions, the validation, and the properties of the assimi-
lated fields. Section 6 concludes this study. Section 7 dis-
cusses future challenges.

2 Observations

This section introduces the observations used for the data as-
similation (Sect. 2.1 and Table 1) and validation (Sect. 2.2
and Table 2). The data assimilation requires a non-linear ob-
servation operator, H , for each satellite retrieval. The model
fields, x, are first interpolated to the horizontal location of
each observation and the height of each of the vertical layers
using the spatial interpolation operator, S. Then the averag-
ing kernel, A, and the a priori profile, xa, of each observa-
tion are applied to obtain the model fields in the observation
space, yb,

yb =H(x)=xa+A(S(x)�xa). (1)

The averaging kernel matrix is used to define the sensitiv-
ity of the estimated state to changes to the true state, while
the trace of the averaging kernel matrix gives a measure of
the number of independent pieces of information, i.e. the
Degree of Freedom for Signals (DOFs) (Rodgers, 2000). In
this approach, the satellite-model difference (yo�yb) is not,
or only weakly, biased by the a priori profile xa (Eskes and
Boersma, 2003; Rodgers and Connor, 2003),

yo�yb =A(xtrue�S(x))+✏, (2)

where the observational error ✏ is the sum of the measure-
ment error and the representativeness error (both random and
systematic), and xtrue represents the true atmosphere profile.
The same observation operator has been also applied for vali-
dating the model profile against retrievals in order to remove
the influence of the smoothing error and the retrieval error
arising from the a priori profile. For plotting the global dis-
tribution, both the retrieved and simulated concentrations are
mapped onto a same resolution of 2.5⇥ 2.5� (1.25⇥ 1� for
MLS/OMI TOC only).

2.1 Measurements used in the assimilation

2.1.1 OMI tropospheric NO2 column

The Dutch-Finnish OMI instrument, which was launched
aboard the Aura satellite in July 2004, is a nadir-viewing
imaging spectrograph (Levelt et al., 2006). Aura traces
a sun-synchronous, polar orbit with a period of 100min.
OMI provides measurements of both direct and atmosphere-
backscattered sunlight in the ultraviolet visible range from
270 to 500 nm. OMI pixels are 13⇥ 24 km at nadir, in-
creasing in size to 24⇥ 135 km for the largest viewing an-
gles. OMI tropospheric NO2 column retrievals, with their
daily global coverage, are effective to constrain global NOx

emissions on a daily basis, unlike GOME-2 and SCIA-
MACHY retrievals which have poorer spatial and tempo-
ral resolutions and less global coverage (Richter and Bur-
rows, 2002; Boersma et al., 2008b). The overpass time of
OMI (about 13:40 LT) is more suitable for the estimation
of lightning NOx sources than that of GOME-2 and SCIA-
MACHY (both in the morning). The Dutch OMI tropo-
spheric NO2 data product DOMINO version 2 (Boersma
et al., 2011) is used in this study. The error in OMI
NO2 retrievals for individual pixels can be approximated as
1.0⇥ 1015 moleccm�2 + 25 % (Boersma et al., 2011). De-
tails of the retrieval and error estimates are described by
Boersma et al. (2004, 2007, 2011). Only observations with
a radiance reflectance from clouds of less than 50 % (i.e.
cloud fraction less than about 20 %) and surface albedo of
less than 0.3 with quality flag= 0 (meaningful tropospheric
retrievals) are used, as recommended by the product specifi-
cation document (Boersma et al., 2011).

The averaging kernel is used to create modeled tropo-
spheric NO2 columns from the observation operator, which
removes the contribution of the retrieval error due to the
a priori profile assumed (Eskes and Boersma, 2003), as de-
scribed by Miyazaki et al. (2012). The spatial resolution of
the OMI data is much finer than that of the model used in this
study ( 2.8�, about 300 km in the equator). Thus, there are
large representativeness errors in the model because of un-
resolved small-scale variations. To fill the spatial scale gaps
and to obtain more representative data, a super-observation
approach has been developed and applied to the OMI data, as
described by Miyazaki et al. (2012). The super-observation

• The observa8on operator (H) converts the model profiles (x) to the 
profile that would be retrieved from satellite measurements (yb).

(Rodgers, 2000; Eskes and Boersma, 2003)

•The model-satellite difference is not biased by the retrieval a priori 
profile.
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PITT, OMI, and MLS are assimilated into the global chem-
ical transport model (CTM) “Chemical AGCM for study of
atmospheric environment and radiative forcing” (CHASER).
TES has the potential to efficiently constrain tropospheric
O3 profiles (Foret et al., 2009). MOPPIT is suitable for
global CO emission estimates because of its good global
coverage. MLS is expected to provide important constraints
on the background concentrations of O3, HNO3, and other
O3 precursors in the UTLS together with lightning NOx

sources. The high temporal and spatial resolutions of the
OMI are useful to optimize NOx emissions on a daily ba-
sis. The assimilation results are validated against indepen-
dent data, obtained from five satellite instruments, MLS/OMI
(tropospheric O3 column, TOC), TES (CO), and GOME-
2 and SCIAMACHY (tropospheric NO2 column). Global
ozonesonde data and aircraft observations obtained during
the INTEX-B campaign (Singh et al., 2009) are also used
for the validation of the vertical profiles. To the authors best
knowledge, this is the first advanced data assimilation system
that simultaneously optimizes the concentrations and emis-
sions of multiple tropospheric trace gases, based on multiple
satellite sensor/species data sets. The structure of this pa-
per is as follows. Section 2 describes the data. Section 3
introduces the data assimilation system. Section 4 presents
Observing System Experiment (OSE) results to identify the
relative contribution of each assimilated data set. Section 5
presents the data assimilation results including the estimated
emissions, the validation, and the properties of the assimi-
lated fields. Section 6 concludes this study. Section 7 dis-
cusses future challenges.

2 Observations

This section introduces the observations used for the data as-
similation (Sect. 2.1 and Table 1) and validation (Sect. 2.2
and Table 2). The data assimilation requires a non-linear ob-
servation operator, H , for each satellite retrieval. The model
fields, x, are first interpolated to the horizontal location of
each observation and the height of each of the vertical layers
using the spatial interpolation operator, S. Then the averag-
ing kernel, A, and the a priori profile, xa, of each observa-
tion are applied to obtain the model fields in the observation
space, yb,

yb =H(x)=xa+A(S(x)�xa). (1)

The averaging kernel matrix is used to define the sensitiv-
ity of the estimated state to changes to the true state, while
the trace of the averaging kernel matrix gives a measure of
the number of independent pieces of information, i.e. the
Degree of Freedom for Signals (DOFs) (Rodgers, 2000). In
this approach, the satellite-model difference (yo�yb) is not,
or only weakly, biased by the a priori profile xa (Eskes and
Boersma, 2003; Rodgers and Connor, 2003),

yo�yb =A(xtrue�S(x))+✏, (2)

where the observational error ✏ is the sum of the measure-
ment error and the representativeness error (both random and
systematic), and xtrue represents the true atmosphere profile.
The same observation operator has been also applied for vali-
dating the model profile against retrievals in order to remove
the influence of the smoothing error and the retrieval error
arising from the a priori profile. For plotting the global dis-
tribution, both the retrieved and simulated concentrations are
mapped onto a same resolution of 2.5⇥ 2.5� (1.25⇥ 1� for
MLS/OMI TOC only).

2.1 Measurements used in the assimilation

2.1.1 OMI tropospheric NO2 column

The Dutch-Finnish OMI instrument, which was launched
aboard the Aura satellite in July 2004, is a nadir-viewing
imaging spectrograph (Levelt et al., 2006). Aura traces
a sun-synchronous, polar orbit with a period of 100min.
OMI provides measurements of both direct and atmosphere-
backscattered sunlight in the ultraviolet visible range from
270 to 500 nm. OMI pixels are 13⇥ 24 km at nadir, in-
creasing in size to 24⇥ 135 km for the largest viewing an-
gles. OMI tropospheric NO2 column retrievals, with their
daily global coverage, are effective to constrain global NOx

emissions on a daily basis, unlike GOME-2 and SCIA-
MACHY retrievals which have poorer spatial and tempo-
ral resolutions and less global coverage (Richter and Bur-
rows, 2002; Boersma et al., 2008b). The overpass time of
OMI (about 13:40 LT) is more suitable for the estimation
of lightning NOx sources than that of GOME-2 and SCIA-
MACHY (both in the morning). The Dutch OMI tropo-
spheric NO2 data product DOMINO version 2 (Boersma
et al., 2011) is used in this study. The error in OMI
NO2 retrievals for individual pixels can be approximated as
1.0⇥ 1015 moleccm�2 + 25 % (Boersma et al., 2011). De-
tails of the retrieval and error estimates are described by
Boersma et al. (2004, 2007, 2011). Only observations with
a radiance reflectance from clouds of less than 50 % (i.e.
cloud fraction less than about 20 %) and surface albedo of
less than 0.3 with quality flag= 0 (meaningful tropospheric
retrievals) are used, as recommended by the product specifi-
cation document (Boersma et al., 2011).

The averaging kernel is used to create modeled tropo-
spheric NO2 columns from the observation operator, which
removes the contribution of the retrieval error due to the
a priori profile assumed (Eskes and Boersma, 2003), as de-
scribed by Miyazaki et al. (2012). The spatial resolution of
the OMI data is much finer than that of the model used in this
study ( 2.8�, about 300 km in the equator). Thus, there are
large representativeness errors in the model because of un-
resolved small-scale variations. To fill the spatial scale gaps
and to obtain more representative data, a super-observation
approach has been developed and applied to the OMI data, as
described by Miyazaki et al. (2012). The super-observation

How are retrievals used?
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What is the impact of IR soundings in 
regional and global models?
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•AIRS/OMI ozone retrievals provided the largest correccons for dynamic weather 
condicons (P1), whereas the improvement was limited just aier stagnant condicons (P3). 

•Combining precursors’ emission op8miza8on and direct ozone assimila8on is an effeccve 
method to obtain sufficient correccons on ozone for any meteorological condicon. 
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Free tropospheric and surface ozone validation
700-300 hPa: against TES (China)
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TES/OMI multispectral ozone products have also been 
used to infer surface ozone (Colombi et al., 2021)

Miyazaki et 
al., 2020b

Monitoring → DA
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Regional model boundary conditions: Evaluation using AIRS/OMI

–The assimilation improves the representation of plume transport across the Pacific 
relative to AIRS/OMI 

–Further improvements may be seen with assimilation of AIRS/OMI O3.

NASA HAQAST
What is the impact of IR soundings in regional and global models?

Neu et al., 2020



Human accvity and technology

Air pollutant emissions (NOx etc)

Air pollucon level (Ozone, PM2.5)

Human health 
& Climate

Environmental policy to  
reduce human health risk  

from air pollucon

Complex chemical mechanisms

??

COVID-19 

natural experiment

Answer!! 

(observables)

Im
p
lica

8
o
n
s fo

r 

e
ff
e
c8

v
e
 p

o
licy

 m
a
k
in

g

Can be inferred

Human ac8vity

??
Miyazaki et al., 

Science Adv. 2021 
Laughner et al., 

PNAS 2021



Global anthropogenic emission reductions in 2020: 7% (CO2)  8% (NOx)
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Figure 1: Schematic diagram of the methodology used in this study. (1) (a) The top-down 2010-2019 
emissions obtained from the chemical data assimilation (green lines) were used to (b) evaluate relative 
temporal emission changes from the base date (February 1, January 10 for China only) through July 31 
each year. (c) The calculated relative temporal emission changes were averaged over the ten years 
(2010-2019) to obtain climatological relative emission variations (solid blue line). (d) The climatological 
variations were applied to the 2020 emission (solid red line) values on the base date to obtain the BAU 
emissions for 2020 (solid blue line) and then compared with the 2020 emissions to estimate the COVID 
emission anomaly. (2) The COVID-19 ozone response through February to July 2020 and monthly OPE 
estimated from the beginning to end of each month were estimated from model simulations by replacing 
the BAU emissions with the 2020 emissions for each region or globally. ( 3) The evaluated ozone 
response were compared with the observed changes from the CrIS satellite and surface observations.
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Miyazaki et al., 2021



Estimated NOx emissions

-9%

-15%

In April-May 2020 

- Europe, North America, the Middle East 

and West Asia: -18-25% 

- Africa and South America: -5-10% 

- Global total: -5 TgN/year 

1. Emissions (NOx)
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Global ozone response: Comparisons against CrIS satellite

CrIS (JPL TROPESS) 
ozone 700 hPa: 

2020 minus 2019

2. Concentra8ons
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• The chemical reanalysis data, combined with suborbital and ground-based measurements, 
has been used to improve our understanding of atmospheric composition and to evaluate 
new satellite data products including AIRS/OMI and CrIS. 

• Answers to the meeting questions: (1) IR soundings have a big impact on global and regional 
studies as well as climate. (2) Low data latency would be important for predictions (e.g., 
wildfire impacts) while attribution analysis w/o low data latency is also important. (3) 
Assimilation of retrievals are efficient and sufficient for science applications. 

• New LEO and GEO measurements and multi-spectral retrievals of composition provide much-
improved spatial and temporal resolution and coverage in conjunction with the chemical 
reanalysis. They should lead to greater usefulness of satellite measurements for climate and 
air quality applications. E.g., GEMS NO2 with CrIS/TROPOMI O3 would better isolate sources 
and attribute sectors and their influences on ozone at daily scales.

Summary


