

Infra-red soundings in NWP at the Met Office: experience and suggestions for future systems

John Eyre Met Office, UK

NOAA Workshop on IR sounders 6 Dec 2021

www.metoffice.gov.uk

Infra-red soundings in NWP at the Met Office: experience and suggestions for future systems

- Met Office use of IR sounder data in NWP
 - Observations used
 - Impacts
 - Monitoring
- Future IR sounding systems
 - What's important?
- Comments on NOAA requirements
- Conclusions

Infra-red soundings in NWP at the Met Office:

instruments used

IASI Metop(-A), -B, -C

CrIS Suomi-NPP, NOAA-20

AIRS Aqua

Also investigated:

HIRAS FY-3D

Infra-red soundings in NWP at the Met Office: impact (1)

Data denial experiments

Aug-Oct 2019

%impact on error variance of 24h forecast

- by DDE
- by FSOI

Candy B et al., 2021 Met Office FRTR 641

Eyre J, 2021. QJRMS DOI: 10.1002/qj.4123

Infra-red soundings in NWP at the Met Office: impact (1)

Infra-red soundings in NWP at the Met Office: impact (2)

Relative total impact (%)

Infra-red soundings in NWP at the Met Office: impact (3)

Suomi NPP CrlS channels / 20210501T0000Z-20210531T1800Z Total impact (J/kg)

FSOI impacts

by IR channel

Suomi-NPP / CrIS

May 2021

Microwave soundings in NWP at the Met Office: monitoring (1)

Routine monitoring includes:

- mean and standard deviation of observed-minus-forecast brightness temperatures, "O-Bs"
- for each channel
- for each assimilation cycle

Following data are averages for 2 weeks in June-July 2021

Standard deviations of observedminus-forecast brightness temps: monitoring (2):

CrIS assimilated channel number □

Infra-red soundings in NWP at the Met Office: monitoring (3)

- For key tropospheric temperature sounding channels,
 SD of (O-B) is <u>0.1-0.2 K</u>
- For key tropospheric humidity sounding channels, SD of (O-B) is ~1.0 K
- These values include:
 - measurement error (NEdT) and
 - RT model error <u>and</u>
 - pre-processing error <u>and</u>
 - forecast error!

Future IR sounding systems: what's important? (1)

Temperature sounding

- Low NEdT: < 0.2 K
- Complication: effects of high spectral resolution on noise requirements needs careful study

- As for MW, calibration stability should be better than this
- ... particularly around orbit, and over periods of 1-2 days.
- NWP bias correction (VarBC) can handle changes on slower time scales, and the occasional jump

Future MW sounding systems: what's important? (2)

Temperature sounding

Horizontal resolution – 25-50 km is OK for assimilated data

 because of limited vertical resolution and the aspect ratio of atmospheric features

but

- higher resolution/sampling needed for cloud problem
- coincident imagery also useful for cloud problem
- ... and see on (humidity sounding)

Future MW sounding systems: what's important? (3)

Temperature sounding

Longwave CO2 or Shortwave CO2 or Both?

- Longwave CO2 preferred at present
- More work needed to improve impact of shortwave
 - improved RT modelling

Future MW sounding systems: what's important? (4)

Humidity sounding

- 6 micron band: longwave side, shortwave side or both?
 - Both preferred
 - If only one, choose side with least contamination from other species, ... assuming NEdT is adequate
- NEdT requirements more relaxed than for temperature
- Higher horizontal resolution more useful for humidity
- Also, for GEO sounder, tracking humidity features gives information on wind

Comments on NOAA requirements and questions (1)

- Selection of channels: "target" as CrIS; priority to longwave
- Spectral resolution (SR): "target" as CrIS, "improved" as IASI
- NEdT: CrlS should be "target", at CrlS spectral resolution
- SR and NEdT should be considered together
- Spatial resolution (fov size): "target" as CrIS; improvements welcome, but not at expense of NEdT
- SR, NEdT and fov size should be considered together
- Spatial sampling: "target" as CrIS. Increases should be considered, but beware unmanageable/unaffordable data rates
- Calibration accuracy is important and calibration stability is
 © Crown copyright 2007

Comments on NOAA requirements and questions (2)

- Backbone as WIGOS 2040 Vision
- Geo hyperspectral IR
 - specification MTG-IRS is a good target
 - applications focus on hi-res NWP and nowcasting
 - also for winds
- Collocation on same platform as MW sounder?
 - · desirable, but not essential
- Timeliness every minute of reduced delay is useful for NWP
- Data form for assimilation
 - now radiances or reconstructed radiances

Comments on NOAA requirements and questions (3)

Other factors?

Consider where information from hyperspectral IR is crucial

 i.e. better than MW or RO – e.g. high vertical resolution
 for temperature in the lower troposphere

 Don't spend all available money on hyperspectral IR (and other mature technologies) - deliver same capability for less cost - spend money saved on meeting other aspects of

user requirements — wind, soil moisture, etc., etc.

Conclusions

Infra-red sounding radiances are very important for operational NWP performance

- Backbone of high-quality instruments will remain important
 - as WMO "Vision for WIGOS in 2040"

 Low NEdT with high spectral resolution and calibration stability are crucial for temperature sounding

