US Space Transportation Industry Outlook

Department of Commerce
Office of Space Commercialization
And
Federal Aviation Administration
Office of Commercial Space Transportation
Space Transportation Architecture

Data Sourced: FAA/AST and Futron Corp
Examples of Commercial Space Transportation and Spaceport

- **Air Launch**
- **Sea Launch**
- **Launch Sites**
- **Ground Launch**
- **Reusable Launch Vehicles**
- **Suborbital Rockets**

Data Sourced: FAA/AST and Futron Corp
The National Space Policy states that for five decades, the United States has led the world in space exploration and use and has developed a solid civil, commercial, and national security foundation.

Space activities have improved life in the United States and around the world, enhancing security, protecting lives and the environment, speeding information flow, serving as an engine for economic growth, and revolutionizing the way people view their place on earth, in the solar system and the universe.

Space has become a place that is increasingly used by a host of nations, consortia, businesses, and entrepreneurs, and is to be protected.

Data Sourced: FAA/AST and Futron Corp
The policy states that in this century, those who effectively utilize space will enjoy added prosperity and security and will hold a substantial advantage over those who do not.

Freedom of action in space is as important to the United States as land, air and sea power. In order to increase knowledge, discovery, economic prosperity and to enhance national security, the United States must have robust, effective and efficient space capabilities.

The fundamental goals of this policy are to strengthen the nation’s space leadership, ensure that space capabilities are available and enable unhindered operations in and through space......and enable a dynamic, globally competitive domestic commercial space sector....
• The U.S has robust space capabilities, growing even more.

• U.S. space strategy and policymaking is transparent to the world.

• Robust U.S. government and industry processes enabling space ventures are in place.

• The U.S. is experienced in usage of and reliance on space enabled services

• In place are strategic partnerships between government, industry and academia.
Space Commerce

• The US is currently the leader in metrics used to globally rank spacefaring countries based on:
 – Ability to provide structure, guidance and funding;
 – Ability for people to develop use for space apps and technology;
 – Ability to commercially finance and deliver space products, services.

• The large US economy enables early adoption of satellite and other space-enabled services.
 – US-operated applications have created large and growing markets.

• The US has a well known legal and regulatory structure for cultivating space business.
 – End goal is commercial space growth.

• The US offers transparency regarding space strategy, policy, spending.
 – No ambiguity on government and commercial plans for space.

Data Sourced: FAA/AST and Futron Corp
Satellite Outlook

Data Sourced: FAA/AST and Futron Corp
Satellite Manufacturing Trends

- US satellite manufacturing production has rebounded from the mid-2000’s slump.

- Over the last 10 years, approximately 50% of all global satellite manufacturing has occurred in the US.

- The US share of satellites manufactured between 1998 and 2007 was 557 satellites, a greater volume than all other satellite manufacturing countries combined.

Data Sourced: FAA/AST and Futron Corp
Satellite Manufacturing Challenges

- Overall US satellite manufacturing has declined from an all-time high in the late 90’s.

- The global projection is a flat market in commercial orbital requirements through 2015.

- Foreign countries are currently developing indigenous satellite manufacturing capabilities.

Data Sourced: FAA/AST and Futron Corp
Space Transportation Outlook

Data Sourced: FAA/AST and Futron Corp
US Space Transportation Systems (USSTŚ) continue to lift the most mass and volume to designated orbits.

USSTŚ achieve the greatest variety of orbital destinations.

The US had 29% of the global market share, on average, for the past 5 years.

There are currently 9 ELVs in operation.

There are currently 12 ELVs under development.

The US has the only operating RLV (21 others in development).

There are currently 6 LEO launch vehicles for small payloads available.

Data Sourced: FAA/AST and Futron Corp
US Space Transportation Challenges

• US orbital launches are decreasing from 37% late 90’s.
• Launch forecast is flat through 2015.
• Russian and Indian launch rates are increasing.
• Russia exceeds (42%) the US (18%) in launches and remains a dominant commercial launch leader globally (2003-2007).
• China has recently overtaken Europe in the number of launches per year.
• The US is challenged by international competition with Japan, Israel and India entering the commercial launch market.
• South Korea, Japan, Brazil and India are increasing their satellite launches using indigenous technology development.
• US launch providers have struggled to compete with lower foreign launch prices.

Data Sourced: FAA/AST and Futron Corp
Commercial Transportation Systems

Companies with Active FAA Launch Licenses:

- Lockheed Martin - Atlas V (4,950- 8,670 kg)

- Boeing - Delta IV (9,150 – 22,560 kg)

- Boeing - Delta II (900- 6,100 kg)

- Sea Launch - Zenit 3SL (6,100 kg)

- Orbital Sciences –Pegasus XL, Taurus (440 kg, 1,590 kg, respectively)

Data Sourced: FAA/AST and Futron Corp
Available US ELVs

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Minotaur</th>
<th>Pegasus XL</th>
<th>Taurus XL</th>
<th>Delta II</th>
<th>Delta IV</th>
<th>Atlas V</th>
<th>Delta IV Heavy</th>
<th>Zenit-3SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td>Orbital Sciences</td>
<td>Orbital Sciences</td>
<td>Orbital Sciences</td>
<td>ULA</td>
<td>ULA</td>
<td>ULA</td>
<td>ULA</td>
<td>Sea Launch</td>
</tr>
<tr>
<td>Stages</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Payload</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(LEO)</td>
<td>640 kg</td>
<td>440 kg</td>
<td>1,590 kg</td>
<td>6,100 kg</td>
<td>9,150 kg</td>
<td>12,500 kg</td>
<td>22,560 kg</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>(1,410 lb)</td>
<td>(970 lb)</td>
<td>(3,505 lb)</td>
<td>(13,440 lb)</td>
<td>(20,170 lb)</td>
<td>(27,560 lb)</td>
<td>(49,740 lb)</td>
<td></td>
</tr>
<tr>
<td>(SSO)</td>
<td>340 kg</td>
<td>190 kg</td>
<td>860 kg</td>
<td>3,600 kg</td>
<td>7,510 kg</td>
<td>7,095 kg</td>
<td>22,560 kg</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>(750 lb)</td>
<td>(420 lb)</td>
<td>(2,000 lb)</td>
<td>(7,930 lb)</td>
<td>(16,550 lb)</td>
<td>(15,640 lb)</td>
<td>(49,740 lb)</td>
<td></td>
</tr>
<tr>
<td>(SSO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(GTO)</td>
<td>N/A</td>
<td>N/A</td>
<td>430 kg</td>
<td>2,170 kg</td>
<td>4,300 kg</td>
<td>4,950 kg</td>
<td>12,980 kg</td>
<td>6,100 kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(950 lb)</td>
<td>(4,790 lb)</td>
<td>(9,480 lb)</td>
<td>(10,910 lb)</td>
<td>(28,620 lb)</td>
<td>(13,500 lb)</td>
</tr>
<tr>
<td>Launch Sites</td>
<td>VAFB, Wallops</td>
<td>VAFB, Wallops</td>
<td>VAFB</td>
<td>CCAFS, VAFB</td>
<td>CCAFS, VAFB</td>
<td>CCAFS, VAFB</td>
<td>CCAFS, VAFB</td>
<td>Pacific Ocean</td>
</tr>
</tbody>
</table>

Data Sourced: FAA/AST and Futron Corp
US Transportation Systems in Development- ELV’s

- ATK Launch Vehicle (1360 kg) – Alliant Techsystems
- Aquarius (1,000 kg) – Space Systems/Loral
- Eagle S (580 kg) – E’Prime
- FALCON SLV (840 kg) – LM, Michoud
- Nanosat Launch Vehicle – (10 kg) Garvey Spacecraft
- Sprite SLV (481kg) – Microcosm, Inc
- Minotaur IV & V (1750 kg; 670 kg) – Orbital Sciences Corp
- Falcon 1 (475kg) – SpaceX
- Falcon 9 (27,500 kg) – SpaceX
- Taurus 2- (6,000 kg)- Orbital Sciences Corp
- QuickReach-(450 kg)- AirLaunch LLC
- Z-1 (5 kg) - Zig Aerospace, LLC

Data Sourced: FAA/AST and Futron Corp
NASA Commercial Orbital Transportation Systems – Funded Programs

Vehicle
- **LEO:**
 - **Falcon 9 - SpaceX:** 24,750 kg
 - **Taurus II – Orbital Sciences:** 5,500 kg
- **GTO:**
 - **Falcon 9 - SpaceX:** 9,650 kg

Data Sourced: FAA/AST and Futron Corp
US Transportation Systems in Development - RLV’s

- BSC Spaceship (6 people, 65 mi) – Benson Space Company
- New Shepard (3 people, 63 mi) – Blue Origin
- Neptune (3175 kg) – Interorbital Systems
- Rocketplane XP (6 people, 62 mi) – Oklahoma Spaceport
- K-1 Rocketplane Kistler (5,700 kg) – RpK
- SpaceShipTwo (8 people 62 mi) – Scaled Composites, LLC, Virgin Galactic, Spaceship Company
- Michelle-B (1000 kg estimate) – TGV
- Crew Transfer Vehicle (3 people or 910 kg to LEO) – T/Space
- Lynx (2 people, 37 mi) - Xcor

Data Sourced: FAA/AST and Futron Corp
Spaceports

Data Sourced: FAA/AST and Futron Corp
U.S. Spaceports
Commercial and Government
Active and Proposed Launch Sites

Key
- U.S. Federal Launch Site
- Non-Federal FAA-Licensed Launch Site
- Proposed Non-Federal Launch Site
- Sole Site Operator (FAA license or permit)

Data Sourced: FAA/AST and Futron Corp
US Spaceports

<table>
<thead>
<tr>
<th>State</th>
<th>Non-Federal</th>
<th>Federal</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>California (4)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Florida (4)</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>New Mexico (2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Texas (3)</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Virginia (2)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Offshore (2)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Alaska (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyoming (1)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Washington (1)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Wisconsin (1)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Oklahoma (1)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alabama (1)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Total:</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Data Sourced: FAA/AST and Futron Corp
US spaceports offer access to numerous orbital inclinations.

Data Sourced: FAA/AST and Futron Corp

FAA, *Commercial Space Transportation: 2007 Year in Review*

FAA 2008 US Commercial Space Transportation Developments and Concepts” Vehicles, Technologies and Spaceports

Futron *Futron’s 2008 Space Competitive Index*

Data Sourced: FAA/AST and Futron Corp
George Nield
Associate Administrator, Commercial Space Transportation
Federal Aviation Administration
U.S. Department of Transportation

www.faa.gov
(202) 267-7848

Ed Morris
Director, Office of Space Commercialization
National Oceanic and Atmospheric Administration
U.S. Department of Commerce

space.commerce@noaa.gov
(202) 482-6125

Data Sourced: FAA/AST and Futron Corp