Overview: Space Debris and Reentry Hazards

William Ailor, Ph.D.
Principal Director
Center for Orbital and Reentry Debris Studies
The Aerospace Corporation

March 27, 2008
Space Debris
Space Debris Overview

- **Man-made objects**
 - Debris from exploded satellites and rocket stages
 - Dead satellites
 - Debris from normal operations
 - Astronaut’s glove

- **Have about 700 operating satellites**
 - Over 12,000 pieces of tracked debris
 - Over 100,000 pieces of debris large enough to cause loss of a satellite
Why the concern with small debris?

- Average impact velocity ~20,000 miles/hour at LEO
- High relative velocities means small particles can do much damage
- 795 window craters over 24 Shuttle missions (3.56 m² total area)

4-mm-diameter crater on windshield of Space Shuttle Orbiter made by 0.2 mm fleck of white paint; relative velocity at impact: 3-6 km/sec (NASA Photo)
Impacts on Hubble Space Telescope by Non-Track Object

~7 years of exposure

NASA
Number of Orbiting Objects
Altitude Distribution
History of Large Object Interference

- Three confirmed accidental collisions
 - Non-operational Russian Cosmos navigational satellite collided with debris from a sister Cosmos satellite (December 1991)
 - French satellite CERISE damaged by fragment from Ariane rocket body (1996)
 - Final stage of a US Thor Burner 2A rocket, launched in 1974, collided with a fragment from the upper stage of a Chinese Long March 4 which exploded in March 2002 (January 2005)

- Near misses with Space Shuttle, Mir, ISS
 - NASA moved Space Shuttle at least 8 times, ISS 3 times to avoid close approaches

- Commercial operators move GEO satellites
Recent Events

- **Chinese ASAT test 11 January 2007**
 - 958 kg target in 853 km circular orbit, 98.7° inclination
 - Generated 1500 fragments, 200km ≤ H ≤ 4,800km

- **Russian rocket stage explosion 19 February 2007**
 - 853km × 14712km orbit, 51.5° inclination
 - Similar number of fragments
Recent Events: USA-193 Intercept

Maximum Longevity of Debris

- Assuming a worst case scenario of fragmentation at 250 km, 99% of the debris placed in orbit will reenter within one week.
Recent Events: USA-193 Intercept

Initial Extent of Debris

- Again assuming a worst case scenario of a fragmentation at 250 km, the majority of the orbital debris cloud would be confined to low altitudes.

More than 99% of debris will fall out of orbit within one week of the event.
Sources of Debris & Mitigation

- **Source: On-orbit explosions**
 - Mitigation:
 - Deplete and/or vent propellants and pressurants at end of life
 - Open-circuit batteries

- **Source: Debris created during injection, normal operations**
 - Mitigation:
 - De-orbit stages
 - Tether releasable parts (lens covers, etc.)
 - Capture debris from explosive bolts and mechanisms
 - Avoid environmental degradation of coatings and materials

- **Source: Collisions**
 - Move hardware out of operational regions
 - Reenter, move to disposal orbit
 - Maneuver to avoid collisions
Avoiding Collisions

- Position “known” at time of measurement, degrades until next measurement
- Models estimate probability of impact (or interference)
- “Action” (new measurement or satellite maneuver) taken if probability exceeds threshold
- Models must also look into the future to show proposed action is safe

Covariance ellipsoids indicate possible locations of orbiting object
Requirements and Standards

- Inter-Agency Space Debris Coordinating Committee (IADC) guidelines
- NASA, DoD, FCC have adopted policies on debris mitigation
- ISO developing international standards for mission and hardware design to minimize creation of orbital debris
 - End-of-mission disposal of GEO satellites
 - Prediction of reentry hazards
 - Estimating residual propellant
The Future

Assumes
- 200 to 2000 km altitude orbits
- No mitigation (no post-mission maneuvers to dispose of hardware)
- 1997-2004 launch cycle

Predicts ~24 collisions in next 100 years

What happens when debris comes back to earth?

WE’LL BE SHUTTING DOWN OUR GLOBAL COMMUNICATIONS BUSINESS AND DE-ORBITING OUR SATELLITES.

QUESTION: WOULDN’T THAT CREATE DOZENS OF DEADLY FLAME BALLS SPEEDING TOWARD EARTH?

THAT’S WHY WE’RE AIMING FOR CITIES THAT HAVE LOTS OF SWIMMING POOLS.
Reentry Breakup Process

- Aerodynamic heating and loads on a reentering satellite will gradually break the hardware apart
- Some materials will survive reentry
 - Steel, glass, titanium, sheltered parts
- Some melted or shredded away
 - Aluminum, Mylar sheets
- Once separated from the parent body, debris follows new trajectory
- Debris pieces impact within a “footprint” on the ground
Reentry of Compton Gamma Ray Observatory

- NASA satellite
- 12,000 kg
- Launched in 1991
- Reentered into the Pacific Ocean on June 4, 2000
Reentry Disposal

- Reentry will “burn-up” reentering hardware--but not completely
- Must be done carefully--may pose hazard to people and property on the ground
- Have been several examples
 - Cosmos 954
 - Skylab
 - Russian Mars 96
 - Delta 2s (Texas and South Africa)
 - Disposal of Mir space station
 - Recent Shuttle Columbia disaster
- Can include reentry disposal in design of hardware and mission
Reentry Trajectory
Reconstructed Trajectory for Delta Tank
South Africa Reentry, April 27, 2000

- Launched March 1996
- Delta second stage used for GPS
- Reentered April 27, 2000
- Debris recovered outside of Cape Town, South Africa

Photo: Argus/Enver Essop

Photo: Die Burger/Johann van Tonder

Photo: Die Burger/Antonie Robertson

THE AEROSPACE CORPORATION
Debris recovered in Bangkok, 2005

NASA Photos

THE AEROSPACE CORPORATION
Other Events

- **Argentina (2004)**
 - Delta Stage 3 debris (147 pounds)
 - Debris returned to Aerospace

- **Brazil (2004)**
 - Debris from NASA launch

- **Saudi Arabia (2001)**
 - Delta 3rd Stage debris (140 pounds)
 - On display at Aerospace
Other Events

- **Cosmos 954 (1978)**
 - Russian spacecraft
 - Spread radioactive debris in Canada

- **Skylab (1979)**
 - 155,000 lbs
 - Minimal control over entry point

- **Mars 96**
 - Russian spacecraft
 - Debris in Chile

- **Mir (2001)**
 - 280,000 lbs

- **Columbia accident (2003)**
Aerospace Activities

- Examine recovered debris
- Publish best estimates for reentry events
- Improve reentry hazard prediction models
 - Incorporate results of event, material analyses
- Conduct reentry hazard analyses for space hardware
- Developing sensor to collect *in situ* reentry data
Laboratory Analysis: Columbia Payload Bay Door Rib & Panel Samples

- PLBD Panel Area 1, Rib Area 1, & Rib Area 2 from regions with no apparent damage
- PLBD Rib Areas 3 & 4 from severely charred region

PLBD Rib Area 1
2.3 by 2.3 in. Square Sample
Cut From 0.1 in-Thick Sidewall

PLBD Rib Area 2
1.5 in-Long Sample
Cut From 0.25 in-Thick End Wall
Directly Above Area 1

PLBD Rib Areas 3 & 4
Severe Charring on Inside of U-Shaped PLBD Rib
Remaining Sidewall Thickness \(\approx 0.075\) in.
Remaining End Wall Thickness \(\approx 0.185\) in.
Bare Fibers on Inside of Sidewalls
Delamination Between Most Plies on Sidewalls
Epoxy Appears Intact on Outside Ply of Sidewalls

Unprotected End of PLBD Rib

PLBD Panel Area 1
Honeycomb Sandwich
Gr/Epoxy Facesheets & Phenolic Core
Nomex® Insulation on Outside
Reentry Breakup Recorder

- 2-kg, 12-inch diameter
- GPS, Temperature sensors, Accelerometers, data recorder, batteries, Iridium modem
- Ride of opportunity to space; no services required from host or ground systems
- Probe records data during reentry; phones home data via Iridium prior to impact
- Probe not recovered
- Technology may enable other new systems (launch hardware impact locator, Black Box for reentry vehicles)

NASA Ames Research Center illustration
Reentry Breakup Recorder (REBR)

Event	**Minutes**
Total time for reentry | ~65 – 85
Blackout duration | ~4
Time from breakup to impact | ~7 – 30

Acquire GPS signal and Transmit to Iridium (t+55 min to impact)
Reentry Predictions

- Predictions of upcoming reentry events available at www.aero.org/capabilities/cords
- Predictions posted for events in next 5 days
- Worldwide interest and input

For clarity, ground track plot is limited to ±6 hours (ticks at 5-minute intervals)

Blue Line - ground track uncertainty prior to predicted time
Yellow Line - ground track uncertainty after predicted time
Orange Line - Earth horizon as seen from the reentering body
White Line - day/night terminator (Sun location as indicated)
Summary

- Orbital debris and reentry hazards are emerging problems for space operators.
- Mitigation policies adopted by U.S. consistent with those being evolved worldwide.
- No major collision incidents to date, probability increasing.
- Governments, manufacturers, operators taking actions to minimize future threats.
- Increased emphasis on space situational awareness for protecting critical assets and capabilities.
- Capabilities to predict collision, reentry, related hazards are evolving.
- Good data on actual reentry breakups would reduce uncertainty.