Resolution Metrics for Space-Based Imagery

Dr. Rick Heidner
Distinguished Scientist
Strategic Awareness and Policy Directorate

Presented to: Advisory Committee on Commercial Remote Sensing (ACCRES)

May 15, 2014
Overview of Presentation

• Performance dimensions for VNIR/SWIR EO satellites
 – Spatial resolution
 – Spectral resolution
 – Temporal resolution and revisit time
 – Radiometric resolution and accuracy

• Panchromatic and MS/SS/HS Spatial Resolution
 – Implications of Discrete Image Sampling
 • What is the Meaning of “Q”?
 – The GRD versus the GSD
 – The PSF versus the Pixel Pitch (p)
 • Pathways to 1.0m, 0.5m and 0.25m GSD: Variation of D, Q, and H
 • What are the implications of oversampling?
 • What are the implications of super-resolution?
 – Spectral Imaging: the Design of Q for MSI and HSI Sensors
 – Signal-to-Noise (SNR) and Radiometry (Accuracy and Precision)
Panchromatic Spatial Resolution

Diffraction and Sampling Limitations for Point Sources

- **Diffraction-limited resolution**
 \[GRD = 1.22 \times (\lambda/D) \times H \] (Rayleigh criterion)

- **Sampling-limited resolution**
 \[GSD = (p/L) \times H = IFOV \times H \]

- “Q” is a property of the sensor only
 \[Q = (\lambda \times FN)/p, \ FN = L/D \]

- **Q relates GRD and GSD**
 - \[GRD = 1.22 \times Q \times GSD \]
 - \[Q = 2 \] for Nyquist sampling (best resolution)
 - Choice of \(Q \) is a critical design feature
Pathways to Hi-Res PAN: Variation of D, Q, and H

<table>
<thead>
<tr>
<th>Aperture D(m)</th>
<th>(\lambda_{\text{mean}}) ((\mu\text{m}))</th>
<th>Pixel Pitch p((\mu\text{m}))</th>
<th>Focal Length L(m)</th>
<th>Q ((\lambda_{\text{mean}}\times FN/p))</th>
<th>IFOV ((\mu\text{rad}))</th>
<th>H (km)</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35</td>
<td>0.675</td>
<td>8.00</td>
<td>3.32</td>
<td>0.8</td>
<td>2.41</td>
<td>GSD (m)</td>
<td>0.84</td>
<td>0.96</td>
<td>1.08</td>
<td>1.21</td>
<td>1.33</td>
<td>1.45</td>
<td>1.57</td>
<td>1.69</td>
</tr>
<tr>
<td>0.35</td>
<td>0.675</td>
<td>8.00</td>
<td>4.15</td>
<td>1</td>
<td>1.93</td>
<td></td>
<td>0.68</td>
<td>0.77</td>
<td>0.87</td>
<td>0.96</td>
<td>1.06</td>
<td>1.16</td>
<td>1.25</td>
<td>1.35</td>
</tr>
<tr>
<td>0.35</td>
<td>0.675</td>
<td>8.00</td>
<td>4.98</td>
<td>1.2</td>
<td>1.61</td>
<td></td>
<td>0.56</td>
<td>0.64</td>
<td>0.72</td>
<td>0.80</td>
<td>0.88</td>
<td>0.96</td>
<td>1.04</td>
<td>1.13</td>
</tr>
<tr>
<td>0.35</td>
<td>0.675</td>
<td>8.00</td>
<td>5.81</td>
<td>1.4</td>
<td>1.38</td>
<td></td>
<td>0.48</td>
<td>0.55</td>
<td>0.62</td>
<td>0.69</td>
<td>0.76</td>
<td>0.83</td>
<td>0.90</td>
<td>0.96</td>
</tr>
<tr>
<td>0.50</td>
<td>0.675</td>
<td>8.00</td>
<td>4.74</td>
<td>0.8</td>
<td>1.69</td>
<td></td>
<td>0.59</td>
<td>0.68</td>
<td>0.76</td>
<td>0.84</td>
<td>0.93</td>
<td>1.01</td>
<td>1.10</td>
<td>1.18</td>
</tr>
<tr>
<td>0.50</td>
<td>0.675</td>
<td>8.00</td>
<td>5.93</td>
<td>1</td>
<td>1.35</td>
<td></td>
<td>0.47</td>
<td>0.54</td>
<td>0.61</td>
<td>0.68</td>
<td>0.74</td>
<td>0.81</td>
<td>0.88</td>
<td>0.95</td>
</tr>
<tr>
<td>0.50</td>
<td>0.675</td>
<td>8.00</td>
<td>7.11</td>
<td>1.2</td>
<td>1.13</td>
<td></td>
<td>0.39</td>
<td>0.45</td>
<td>0.51</td>
<td>0.56</td>
<td>0.62</td>
<td>0.68</td>
<td>0.73</td>
<td>0.79</td>
</tr>
<tr>
<td>0.50</td>
<td>0.675</td>
<td>8.00</td>
<td>8.30</td>
<td>1.4</td>
<td>0.96</td>
<td></td>
<td>0.34</td>
<td>0.39</td>
<td>0.43</td>
<td>0.48</td>
<td>0.53</td>
<td>0.58</td>
<td>0.63</td>
<td>0.68</td>
</tr>
<tr>
<td>0.60</td>
<td>0.675</td>
<td>8.00</td>
<td>5.69</td>
<td>0.8</td>
<td>1.41</td>
<td></td>
<td>0.49</td>
<td>0.56</td>
<td>0.63</td>
<td>0.70</td>
<td>0.77</td>
<td>0.84</td>
<td>0.91</td>
<td>0.98</td>
</tr>
<tr>
<td>0.60</td>
<td>0.675</td>
<td>8.00</td>
<td>7.11</td>
<td>1</td>
<td>1.13</td>
<td></td>
<td>0.39</td>
<td>0.45</td>
<td>0.51</td>
<td>0.56</td>
<td>0.62</td>
<td>0.68</td>
<td>0.73</td>
<td>0.79</td>
</tr>
<tr>
<td>0.60</td>
<td>0.675</td>
<td>8.00</td>
<td>8.53</td>
<td>1.2</td>
<td>0.94</td>
<td></td>
<td>0.33</td>
<td>0.38</td>
<td>0.42</td>
<td>0.47</td>
<td>0.52</td>
<td>0.56</td>
<td>0.61</td>
<td>0.66</td>
</tr>
<tr>
<td>0.60</td>
<td>0.675</td>
<td>8.00</td>
<td>9.96</td>
<td>1.4</td>
<td>0.80</td>
<td></td>
<td>0.28</td>
<td>0.32</td>
<td>0.36</td>
<td>0.40</td>
<td>0.44</td>
<td>0.48</td>
<td>0.52</td>
<td>0.56</td>
</tr>
<tr>
<td>0.65</td>
<td>0.675</td>
<td>8.00</td>
<td>6.16</td>
<td>0.8</td>
<td>1.30</td>
<td></td>
<td>0.45</td>
<td>0.52</td>
<td>0.58</td>
<td>0.65</td>
<td>0.71</td>
<td>0.78</td>
<td>0.84</td>
<td>0.91</td>
</tr>
<tr>
<td>0.65</td>
<td>0.675</td>
<td>8.00</td>
<td>7.70</td>
<td>1</td>
<td>1.04</td>
<td></td>
<td>0.36</td>
<td>0.42</td>
<td>0.47</td>
<td>0.52</td>
<td>0.57</td>
<td>0.62</td>
<td>0.68</td>
<td>0.73</td>
</tr>
<tr>
<td>0.65</td>
<td>0.675</td>
<td>8.00</td>
<td>9.24</td>
<td>1.2</td>
<td>0.87</td>
<td></td>
<td>0.30</td>
<td>0.35</td>
<td>0.39</td>
<td>0.43</td>
<td>0.48</td>
<td>0.52</td>
<td>0.56</td>
<td>0.61</td>
</tr>
<tr>
<td>0.65</td>
<td>0.675</td>
<td>8.00</td>
<td>10.79</td>
<td>1.4</td>
<td>0.74</td>
<td></td>
<td>0.26</td>
<td>0.30</td>
<td>0.33</td>
<td>0.37</td>
<td>0.41</td>
<td>0.45</td>
<td>0.48</td>
<td>0.52</td>
</tr>
<tr>
<td>0.70</td>
<td>0.675</td>
<td>8.00</td>
<td>6.64</td>
<td>0.8</td>
<td>1.21</td>
<td></td>
<td>0.42</td>
<td>0.48</td>
<td>0.54</td>
<td>0.60</td>
<td>0.66</td>
<td>0.72</td>
<td>0.78</td>
<td>0.84</td>
</tr>
<tr>
<td>0.70</td>
<td>0.675</td>
<td>8.00</td>
<td>8.30</td>
<td>1</td>
<td>0.96</td>
<td></td>
<td>0.34</td>
<td>0.39</td>
<td>0.43</td>
<td>0.48</td>
<td>0.53</td>
<td>0.58</td>
<td>0.63</td>
<td>0.68</td>
</tr>
<tr>
<td>0.70</td>
<td>0.675</td>
<td>8.00</td>
<td>9.96</td>
<td>1.2</td>
<td>0.80</td>
<td></td>
<td>0.28</td>
<td>0.32</td>
<td>0.36</td>
<td>0.40</td>
<td>0.44</td>
<td>0.48</td>
<td>0.52</td>
<td>0.56</td>
</tr>
<tr>
<td>0.70</td>
<td>0.675</td>
<td>8.00</td>
<td>11.61</td>
<td>1.4</td>
<td>0.69</td>
<td></td>
<td>0.24</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
<td>0.38</td>
<td>0.41</td>
<td>0.45</td>
<td>0.48</td>
</tr>
<tr>
<td>0.80</td>
<td>0.675</td>
<td>8.00</td>
<td>7.59</td>
<td>0.8</td>
<td>1.05</td>
<td></td>
<td>0.37</td>
<td>0.42</td>
<td>0.47</td>
<td>0.53</td>
<td>0.58</td>
<td>0.63</td>
<td>0.69</td>
<td>0.74</td>
</tr>
<tr>
<td>0.80</td>
<td>0.675</td>
<td>8.00</td>
<td>9.48</td>
<td>1</td>
<td>0.84</td>
<td></td>
<td>0.30</td>
<td>0.34</td>
<td>0.38</td>
<td>0.42</td>
<td>0.46</td>
<td>0.51</td>
<td>0.55</td>
<td>0.59</td>
</tr>
<tr>
<td>0.80</td>
<td>0.675</td>
<td>8.00</td>
<td>11.38</td>
<td>1.2</td>
<td>0.70</td>
<td></td>
<td>0.25</td>
<td>0.28</td>
<td>0.32</td>
<td>0.35</td>
<td>0.39</td>
<td>0.42</td>
<td>0.46</td>
<td>0.49</td>
</tr>
<tr>
<td>0.80</td>
<td>0.675</td>
<td>8.00</td>
<td>13.27</td>
<td>1.4</td>
<td>0.60</td>
<td></td>
<td>0.21</td>
<td>0.24</td>
<td>0.27</td>
<td>0.30</td>
<td>0.33</td>
<td>0.36</td>
<td>0.39</td>
<td>0.42</td>
</tr>
<tr>
<td>1.10</td>
<td>0.675</td>
<td>8.00</td>
<td>10.43</td>
<td>0.8</td>
<td>0.77</td>
<td></td>
<td>0.27</td>
<td>0.31</td>
<td>0.35</td>
<td>0.38</td>
<td>0.42</td>
<td>0.46</td>
<td>0.50</td>
<td>0.54</td>
</tr>
<tr>
<td>1.10</td>
<td>0.675</td>
<td>8.00</td>
<td>13.04</td>
<td>1</td>
<td>0.61</td>
<td></td>
<td>0.21</td>
<td>0.25</td>
<td>0.28</td>
<td>0.31</td>
<td>0.34</td>
<td>0.37</td>
<td>0.40</td>
<td>0.43</td>
</tr>
<tr>
<td>1.10</td>
<td>0.675</td>
<td>8.00</td>
<td>15.64</td>
<td>1.2</td>
<td>0.51</td>
<td></td>
<td>0.18</td>
<td>0.20</td>
<td>0.23</td>
<td>0.26</td>
<td>0.28</td>
<td>0.31</td>
<td>0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>1.10</td>
<td>0.675</td>
<td>8.00</td>
<td>18.25</td>
<td>1.4</td>
<td>0.44</td>
<td></td>
<td>0.15</td>
<td>0.18</td>
<td>0.20</td>
<td>0.22</td>
<td>0.24</td>
<td>0.26</td>
<td>0.28</td>
<td>0.31</td>
</tr>
</tbody>
</table>

\[
\text{IFOV} = \frac{p}{L} = \frac{\lambda_{\text{mean}}}{(Q \times D)}; \quad \text{GSD} = \text{IFOV} \times H
\]
Improving Spatial Resolution at Fixed GSD and Q < 2.0

• **Oversampling** – increasing the effective Q by increasing line rate
 – \(LR = \left(\frac{V_{ss}}{\text{GSD}} \right) \times n \), where \(n > 1 \) (\(V_{ss} \) is the sub-satellite velocity)
 – For 1m GSD, \(LR \approx 7000 \text{ lines/sec} \)
 – Examples: EROS-B (ISR) and Pleiades (FRA)

• **Super-Resolution** – a class of techniques to enhance resolution
 – Optical SR can overcome the diffraction limits in Fourier optics
 – Geometrical SR superimposes multiple exposures of images

• **Implications for NOAA regulation**
 – Core regulatory authority is over “operational capability”
 – **Oversampling** in satellite RS systems requires a specific “operational” mode related to line rate and possibly back-scanning
 – **Super-resolution** in satellite RS is a different “operational” mode, often related to dithering a 2-D camera pointing axis
 – Licenses could explicitly limit the use of either mode to improve the ability (CDP or customer) to improve “effective” GSD licensing thresholds
• PAN systems are designed to sample the PSF in multiple pixels
• MSI/HSI systems should constrain the PSF for spectral bands to 1 pixel
 – The pixel location of a “point source of color” should be unambiguous
 – Larger pixels also produce greater SNR ($S \propto Q^2$)
• Co-boresighted PAN/MSI systems differ in IFOV and therefore GSD, but…
 – Additional utility can be derived from PAN-sharpened MSI images
 – PAN-sharpening is different from advanced spectral-spatial analysis
Implications for NOAA/NASA RS Satellites
Technology Transfer and Export Review

- Technology versus image quality
 - \(Q = (\lambda \times FN)/p = (\lambda \times L)/(D \times p) \)
 - \(p/L = \text{IFOV} = \lambda/(Q \times D) \)

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\text{Aperture (m)} & \lambda_{\text{mean}} (\mu m) & \text{Pixel Pitch (\mu m)} & \text{Focal Length (m)} & Q (\lambda \times FN/p) & \text{IFOV (\mu rad)} & H (\text{km}) & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 \\
\hline
0.70 & 0.675 & 8.00 & 6.64 & 0.8 & 1.21 & & 0.42 & 0.48 & 0.54 & 0.60 & 0.66 & 0.72 & 0.78 & 0.84 \\
0.70 & 0.675 & 8.00 & 8.30 & 1 & 0.96 & & 0.34 & 0.39 & 0.43 & 0.48 & 0.53 & 0.58 & 0.63 & 0.68 \\
0.70 & 0.675 & 8.00 & 9.96 & 1.2 & 0.80 & & 0.28 & 0.32 & 0.36 & 0.40 & 0.44 & 0.48 & 0.52 & 0.56 \\
0.70 & 0.675 & 8.00 & 11.61 & 1.4 & 0.69 & & 0.24 & 0.28 & 0.31 & 0.34 & 0.38 & 0.41 & 0.45 & 0.48 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\text{Aperture (m)} & \lambda_{\text{mean}} (\mu m) & \text{Pixel Pitch (\mu m)} & \text{Focal Length (m)} & Q (\lambda \times FN/p) & \text{IFOV (\mu rad)} & H (\text{km}) & 350 & 400 & 450 & 500 & 550 & 600 & 650 & 700 \\
\hline
0.70 & 0.40 & 25.00 & 2.80 & 0.064 & 8.93 & 3.13 & 3.57 & 4.02 & 4.46 & 4.91 & 5.36 & 5.80 & 6.25 \\
0.70 & 0.60 & 25.00 & 2.80 & 0.096 & 8.93 & 3.13 & 3.57 & 4.02 & 4.46 & 4.91 & 5.36 & 5.80 & 6.25 \\
0.70 & 0.80 & 25.00 & 2.80 & 0.128 & 8.93 & 3.13 & 3.57 & 4.02 & 4.46 & 4.91 & 5.36 & 5.80 & 6.25 \\
0.70 & 1.00 & 25.00 & 2.80 & 0.160 & 8.93 & 3.13 & 3.57 & 4.02 & 4.46 & 4.91 & 5.36 & 5.80 & 6.25 \\
0.70 & 1.50 & 25.00 & 2.80 & 0.240 & 8.93 & 3.13 & 3.57 & 4.02 & 4.46 & 4.91 & 5.36 & 5.80 & 6.25 \\
0.70 & 2.00 & 25.00 & 2.80 & 0.320 & 8.93 & 3.13 & 3.57 & 4.02 & 4.46 & 4.91 & 5.36 & 5.80 & 6.25 \\
0.70 & 2.50 & 25.00 & 2.80 & 0.400 & 8.93 & 3.13 & 3.57 & 4.02 & 4.46 & 4.91 & 5.36 & 5.80 & 6.25 \\
\hline
\end{array}
\]

GSD = IFOV x H = constant at a given H for hyperspectral
In Summary

Definitions:

- $GRD = 1.22 \times (\lambda/D) \times H$
- $GSD = (p/L) \times H = IFOV \times H$
- $IFOV = p/L = \lambda/(Q \times D), \ Q = (\lambda \times FN)/p$

- **Aperture constrains best possible spatial resolution for satellite imagers**
 - **Single band systems** (VNIR, SWIR, MWIR, LWIR) are optimized for spatial resolution, aliasing reduction, and SNR
 - **Best resolution attainable** for high-resolution PAN largely determined by system GRD (i.e., aperture)

- **Spectrally-resolved systems** (MSI, SSI, HSI) constrain spatial sampling to a single pixel using $Q \ll 1$
 - Effective resolution is often determined by GSD alone
 - **Instantaneous Field-of-View** (IFOV) is a useful intrinsic sensor metric
 - Regulators would be wise to use IFOV to inform export evaluation of large aperture spectrally-resolved systems (e.g., meteorological sensors)
Back-Up